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Single-Vector CCA

Canonical Correlation Analysis (CCA) is a two-view multivariate statistical
method (H. Hotelling, 1936), where the variables of observations is partitioned
into two sets, i.e., two views of the data.

Data matrices S1 ∈ Rn×q (view 1, n features), S2 ∈ Rm×q (view 2, m features),
q is the number of samples.
Both centralized: Si1q = 0; otherwise, Si ← Si −

1
q (Si111q)111

T
q .

Canonical Variates zzz1 = ST
1 xxx1, zzz2 = ST

2 xxx2 defined in terms of Canonical Weight
Vectors: xxx1 ∈ Rn, xxx2 ∈ Rm.

Canonical Correlation: ρ(xxx1,xxx2) :=
zzzT1 zzz2

||zzz1||2||zzz2||2
=

xxxT
1 C1,2xxx2√

xxxT
1 C1,1xxx1

√
xxxT
2 C2,2xxx2

,

where Ci,j = SiS
T
j , (Cross-)Covariance.

CCA aims to find the pair of canonical weight vectors to maximize canonical
correlation:

max
xxx1,xxx2

ρ(xxx1,xxx2). (1)
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CCA in General

Single-vector CCA (1) has been extended to Canonical Weight Matrices.

Canonical Weight Matrices: X1 ∈ Rn×k, X2 ∈ Rm×k.

Canonical Correlation: f(X1, X2) =
tr(XT

1 C1,2X2)√
tr(XT

1 C1,1X1)
√

tr(XT
2 C2,2X2)

,

CCA in general seeks to maximize canonical correlation:

max
X1,X2

f(X1, X2), s.t. XT
i Ci,iXi = Ik, i = 1, 2, (2)

Closed form solution in terms of SVD for C
−1/2
1,1 C1,2C

−1/2
2,2 . Collectively,

traditional CCA or, simply, CCA is referred to either (1) or (2).

CCA is not suitable for: orthogonal projections are required such as for data
visualization in an orthogonal coordinate system, because optimal X1 and X2 in
(2) usually do not have orthonormal columns.
One can orthogonalize the columns of X1 and X2 as a post-processing step, but
outcome is often suboptimal – less discriminatory.
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Orthogonal CCA (OCCA)

Orthogonal CCA (OCCA) seeks to maximize the correlation:

max
X1∈On×k,X2∈Om×k

f(X1, X2) (3)

directly over orthonormal matrices in On×k = {X ∈ Rn×k : XTX = Ik}.

Different from CCA, OCCA preserves the covariance of the original data S1 and
S2 while correlation is maximized.

Can use generic optimization methods over the product of the Stiefel manifolds,
and indeed applied.
Essentially, they are classical steepest ascent, trust-region, nonlinear CG methods
over the Euclidean space extended to Riemannian manifolds. These methods
don’t recognize any special structure in f : less efficient, low accuracy, ...

P. Cunningham and Z. Ghahramani, Linear dimensionality reduction: Survey, insights, and
generalizations, J. Mach. Learning Res., 16(2015), 2859–2900.

P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms On Matrix Manifolds.
Princeton University Press, 2008.
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OCCA model (abstraction)

Data of both views centralized in advance: S1111q = 0 and S2111q. Define

A = S1S
T
1 ∈ R

n×n, B = S2S
T
2 ∈ R

m×m, C = S1S
T
2 ∈ R

n×m.

OCCA: given an integer 1 ≤ k < min{m,n} (usually k ≪ min{m,n}),
solve

max
X∈On×k ,Y ∈Om×k

f(X,Y ) :=
tr(XTCY )√

tr(XTAX)
√

tr(Y TBY )
. (4)

Propose to maximize f(X,Y ) alternatingly with respective to X and Y .

Although the framework of the proposed numerical scheme is rather
natural, novelty lies in the way how its core sub-maximization problems are
solved.
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Algorithm framework for 2-view OCCA

Algorithm 1. Alternating optimization scheme for (4)

Input: {X(0), Y (0)} with X(0) ∈ On×k, Y (0) ∈ Om×k.
Output: a solution {X(ν), Y (ν)} to (4).
1: for ν = 1, 2, . . . until convergence do

2: solve X(ν) ∈ arg max
X∈On×k

f(X,Y (ν−1));

3: solve Y (ν) ∈ arg max
Y ∈Om×k

f(X(ν), Y );

4: compute SVD: (X(ν))TCY (ν) = Ũ Σ̃Ṽ T, and

set X(ν) ← X(ν)Ũ and Y (ν) ← Y (ν)Ṽ ;
5: end for

6: return {X(ν), Y (ν)} as a numerical solution to (4).

The role of line 4 in Algorithm 1 is to make sure X(ν) and Y (ν) are best-aligned.

In particular, tr(X(ν)TCY (ν)) > 0 and maximized within the column spaces of
X(ν) and Y (ν) at lines 2 & 3.
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Convergence

Convergence Theorem

Let {Xopt, Yopt} be the optimal solution to (4) and {X(ν), Y (ν)} be the νth
approximation of Algorithm 1. Then

(i) XT
optCYopt is symmetric and positive semidefinite.

(ii) (X(ν))TCY (ν) is symmetric and positive semidefinite for ν ≥ 1, and thus for
any limit pair {X∗, Y∗} of {X

(ν), Y (ν)}∞ν=1, X
T
∗ CY∗ is symmetric and

positive semidefinite.

(iii) The sequence {f(X(ν), Y (ν))}∞ν=1 is monotonically increasing and
converges.

Efficiency of Algorithm 1 relies heavily on solving the sub-maximization problems
at Lines 2 and 3.
Abstractly, they are of the following type

max
X∈On×k

η(X) with η(X) :=
tr(XTD)√
tr(XTAX)

, (5)

where 0 6= D ∈ Rn×k and A ≻ 0.
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Local but non-global maximizers

Problem (5) may admit local but non-global maximizers.
Example. Consider the case with n = 5, k = 2,

A =




4 0 −5 −5 1
0 2 1 −1 1
−5 1 9 5 1
−5 −1 5 18 4
−1 1 1 4 2




and D =




−1 1
0 0
0 2
0 0
1 0



.

By calling MATLAB’s fmincon, we find two (numerical) local maximizers:

X+ =




−0.358041496119094 0.770164268103322
−0.453284095949462 −0.326431512218038
−0.091335437376569 0.497561512998402
−0.269574025133855 0.008593213179154
0.765066989399257 0.229451880441015



,
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Local but non-global maximizers (cont’d)

X∗ =




−0.506648923972689 0.664385053189626
0.619602876311725 0.312889763321350
−0.337893503149209 0.384494340924914
0.103073503143856 0.210902556071053
−0.484358314662567 −0.518050876600301



.

η(X+) ≈ 1.517 < η(X∗) ≈ 3.187.

We argue that they are (numerical) local maximizers:

‖ grad η(X)‖F ≤ 10−6 (on On×k) for X = X+ or X∗;

Second order sufficient condition: verified at 107 random tangent
“vectors” in TXOn×k for both X+ and X∗.

This example numerically shows (5) in general admits local but non-global
maximizers.
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SCF Iteration

max
X∈On×k

η(X) with η(X) :=
tr(XTD)√
tr(XTAX)

. (5)

Gradient:

gradη(X) = ΠX

(
∂η(X)

∂X

)
∈ TXO

n×k, (6)

where ΠX(Z) = Z −X sym(XTZ) for Z ∈ Rn×k. By calculations,

∂η(X)

∂X
=

1√
tr(XTAX)

D −
tr(XTD

[tr(XTAX)]3/2
AX,

[tr(XTAX)]3/2

tr(XTD)
gradη(X) = [ξ(X)D −AX ]−XΛ(X) ∈ R

n×k,

where ξ(X) = tr(XTAX)
tr(XTD) ,

Λ(X) = ξ(X)
1

2

[
XTD +DTX

]
−XTAX ∈ R

k×k. (7)
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First Order KKT Condition

Lemma 1. First Order KKT Condition

If X is a maximizer of (5), then XTD = DTX and

ξ(X)D −AX = XΛ(X). (8)

Condition (8) is a type of nonlinear Sylvester equation but with the orthogonality
constraint XTX = Ik. Not clear how to solve.

Turn it into nonlinear eigenvalue problem (NEPv):

E(X)X = XΛ̂(X), (9)

where Λ̂(X)T = Λ̂(X) and

E(X) := ξ(X)(DXT +XDT)−A.

Evidently, E(X) is always symmetric. It is implied Λ̂(X) = XTE(X)X ∈ Rk×k.

Lemma 2. Equivalent KKT Condition

Suppose X ∈ On×k. Then X satisfies (8) if and only if X is an eigenbasis matrix
of E(X), i.e., X satisfies (9).
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A self-consistent-field (SCF) iteration

Necessary condition of a global maximizer for (5)

If Xopt is a global maximizer to (5), then Xopt is an orthonormal
eigenbasis matrix associated with the k largest eigenvalues of E(Xopt).

Algorithm 2. An SCF iteration for solving (5)

Input: X(0) ∈ On×k;
Output: approximate maximizer X to (5).
1: for ν = 1, 2, . . . until convergence do

2: construct E(ν) = E(X(ν−1)) as in (9);
3: compute an orthonormal eigenbasis matrix X(ν) associated with the

k largest eigenvalues of E(ν);

4: compute SVD: XT
(ν)D = UΣV T and update X(ν) ← X(ν)UV T;

5: end for

6: return. the last X(ν) as a numerical maximizer of (5).
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Comments on Algorithm 2 (SCF)

Use full eigen-decomposition of E for small n (e.g., ≤ 200); use an
iterative method for large n such as LOBPCG, Inverse-free (Golub+Ye),
LOBPECG, ...

The SCF iteration stops if

tr(XTD)

[tr(XTAX)]3/2
‖ gradη(G(ν))‖1

‖A‖1 + ‖D‖1
≤ ǫscf

with, e.g., ǫscf = 10−5.
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Convergence

Weak Convergence Theorem

Let {X(ν)} be generated by the SCF iteration (Algorithm 2).

(i) For each ν ≥ 1, DTX(ν) � 0 and tr(XT
(ν)D) =

∑k
j=1 σj(X

T
(ν)D);

(ii) {η(X(ν))} is monotonically increasing and convergent;

(iii) If tr(XT
(ν)E(X(ν−1))X(ν)) ≥ tr(XT

(ν−1)E(X(ν−1))X(ν−1)), (10)

then η(X(ν−1)) ≤ η(X(ν)); If (10) is strict, then also η(X(ν−1)) < η(X(ν));

(iv) {X(ν)} has a convergent subsequence {X(ν)}ν∈I ;

(v) Let {X(ν)}ν∈I be any convergent subsequence of {X(ν)} with the
accumulation point X∗ satisfying

ζ = λk(E(X∗))− λk+1(E(X∗)) > 0. (11)

Then X∗ satisfies the first order optimality condition and also the necessary
condition for a global minimizer.
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Convergence (cont’d)

Strong Convergence Theorem

Let {X(ν)} be generated by the SCF iteration (Algorithm 2), and let X∗ be an
accumulation point of {X(ν)}. Suppose that R(X∗) is an isolated accumulation
point of {R(X(ν))}

∞
ν=0.

(i) {R(X(ν))}
∞
ν=0 converges to R(X∗).

(ii) If also rank(XT
∗ D) = k, then {X(ν)}

∞
ν=0 converges to X∗.
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A random example for Algorithm 2

η(X) =
tr(XTD)√
tr(XTAX)

,
‖E(ν)X(ν) −X(ν)Λ̂(ν)‖2

‖E(ν)‖2
.
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Earlier example with local minimizers

η(X) =
tr(XTD)√
tr(XTAX)

,
‖E(ν)X(ν) −X(ν)Λ̂(ν)‖2

‖E(ν)‖2
.
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Digression: Compared to LDA

Fisher’s linear discriminant analysis (LDA): given symmetric B,A ∈ Rn×n and
A ≻ 0, solve

max
X∈On×k

tr(XTBX)

tr(XTAX)
. (12)

Equivalent to

H(X)X :=

(
B −

tr(XTBX)

tr(XTAX)
A

)
= X(XTH(X)X) =: XΛ(X). (13)

SCF:
H(Xν−1)Xν = XνΛ(Xν) for ν = 1, 2, . . . (14)

(12) has global maximizers, but no local maximizer;

X is a global maximizer if and only if the eigenvalues of Λ(X) consist of
largest k eigenvalues of H(X);

SCF (14) always converges and converges quadratically!
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Digression: SCF for LDA
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Single-Vector Multiset CCA (MCCA)

Multiset CCA (MCCA) is to analyze linear relationships among more than two
canonical variates, as a generalization of traditional two-view CCA.

Widely used model: Given ℓ datasets in the form of matrices

Si ∈ R
ni×q for i = 1, 2, . . . , ℓ, (15)

where ni is the number of features in the ith view, and q is the number of sample
data points.

Assume all Si are centered, i.e., Si111q = 0 for all i.

(Cross-)Covariance: Ci,j = SiS
T
j for i, j = 1, . . . , ℓ. MCCA seeks to solve

max
xxx1,...,xxxℓ

ℓ∑

i, j=1

xxxT
i Ci,jxxxj subject to

{
either

∑ℓ
i=1 xxx

T
i Ci,ixxxi = 1,

or xxxT
i Ci,ixxxi = 1, i = 1, . . . , ℓ.
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Orthogonal Multiset CCA (OMCCA)

We seek Canonical Weight Matrices Xi ∈ Rni×k that solve

max
{Xi}

f({Xi}), s.t. XT
i Xi = Ik, i = 1, . . . , ℓ, (16)

where 1 ≤ k ≤ min{n1, . . . , nℓ, q}, and

f({Xi}) =

ℓ∑

i, j=1
i6=j

ρij
tr(XT

i Ci,jXj)√
tr(XT

i Ci,iXi)
√
tr(XT

j Cj,jXj)
, (17)

with some weighting factors ρij ≥ 0 that turn out to be extremely important.

{ρij} dictate the contribution of the correlation between Si and Sj to the
total f({Xi});

sparse {ρij} dramatically reduce the number terms in f({Xi}) and thus
speed up computations;

judiciously chosen ρij with only a few of them nonzero can in fact improve
the performances of muti-view tasks (as verified by experiments).
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Choosing weights ρij
To begin with, we define

ρ̂ij =

∑rank(Ci,j)
r=1 σr(Ci,j)√
tr(Ci,i) tr(Cj,j)

, for i, j = 1, . . . , ℓ. (18)

It is known 0 ≤ ρ̂ij ≤ 1.

Envision a graph of ℓ nodes corresponding to dataset matrices Xi,
respectively, with every two nodes connected with an edge whose weight
ρij to be determined.

Three heuristic strategies to select the weights ρij = ρji:

1 uniform weighting: use ρij = 1∀i, j;

2 tree weighting: find the minimal spanning tree of the graph with the
same nodes but the edge (i, j) having weight 1− ρ̂ij , and then let
ρij = ρ̂ij if the the edge (i, j) is on the tree and 0 otherwise.

3 top-p weighting: let ρ̃ij = ρ̂ij for the p largest ρ̂ij for i > j and all
other ρ̃ij = 0, and then apply the soft-max function to ρ̃ij to yield ρij.
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SCF algorithm for OMCCA (1)

max
{Xi}

f({Xi}), s.t. XT
i Ci,iXi = Ik, i = 1, . . . , ℓ,

where

f({Xi}) =

ℓ∑

i, j=1
i6=j

ρij
tr(XT

i Ci,jXj)√
tr(XT

i Ci,iXi)
√
tr(XT

j Cj,jXj)
.

Plan to optimize f({Xi}) cyclically over each matrix variable Xi in the styles
similar to either Jacobi or Gauss-Seidel updating for linear systems.

Specifically, an inner-outer iterative method:

outer iteration – each step called a cycle – generates from the current

approximation {X
(ν)
i }

ℓ
i=1 to the next {X

(ν+1)
i }ℓi=1 of the maximizer of

f({Xi});

inner iteration – an either Jacobi-style or Gauss-Seidel-style updating scheme
that relies on the proposed SCF iteration for solving a series of subproblems
in the form of (5).
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SCF algorithm for OMCCA (2)

Let the SVDs of Si be (ri = rank(Si))

Si = UiΣiV
T
i , Ui ∈ R

ni×ri , Vi ∈ R
q×ri , Σi ∈ R

ri×ri . (19)

XT
i SiS

T
j Xj = XT

i UiΣiV
T
i VjΣjU

T
j Xj =: X̂T

i ΣiV
T
i VjΣjX̂j,

where X̂i = UT
i Xi ∈ R

ri×k. Xi = UiX̂i by R(Xi) ⊂ R(Si).
The function f({Xi}) is then transformed into

∑

i6=j

ρij
tr(X̂T

i ΣiV
T
i VjΣjX̂j)√

tr(X̂T
i Σ

2
i X̂i)

√
tr(X̂T

j Σ
2
jX̂j)

=: g({X̂i}),

and, thus

max
Xi∈Oni×k,R(Xi)⊂R(Si), ∀i

f({Xi}) = max
X̂i∈Ori×k, ∀i

g({X̂i}).
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i VjΣjX̂j,

where X̂i = UT
i Xi ∈ R

ri×k. Xi = UiX̂i by R(Xi) ⊂ R(Si).
The function f({Xi}) is then transformed into

∑

i6=j

ρij
tr(X̂T

i ΣiV
T
i VjΣjX̂j)√

tr(X̂T
i Σ

2
i X̂i)

√
tr(X̂T

j Σ
2
jX̂j)

=: g({X̂i}),

and, thus

max
Xi∈Oni×k,R(Xi)⊂R(Si), ∀i

f({Xi}) = max
X̂i∈Ori×k, ∀i

g({X̂i}).

Rencang Li (University of Texas at Arlington) SCF for OCCA September 17, 2020 29 / 40



SCF algorithm for OMCCA (2)

Let the SVDs of Si be (ri = rank(Si))

Si = UiΣiV
T
i , Ui ∈ R

ni×ri , Vi ∈ R
q×ri , Σi ∈ R

ri×ri . (19)

XT
i SiS

T
j Xj = XT

i UiΣiV
T
i VjΣjU

T
j Xj =: X̂T

i ΣiV
T
i VjΣjX̂j,

where X̂i = UT
i Xi ∈ R

ri×k. Xi = UiX̂i by R(Xi) ⊂ R(Si).
The function f({Xi}) is then transformed into

∑

i6=j

ρij
tr(X̂T

i ΣiV
T
i VjΣjX̂j)√

tr(X̂T
i Σ

2
i X̂i)

√
tr(X̂T

j Σ
2
jX̂j)

=: g({X̂i}),

and, thus

max
Xi∈Oni×k,R(Xi)⊂R(Si), ∀i

f({Xi}) = max
X̂i∈Ori×k, ∀i

g({X̂i}).

Rencang Li (University of Texas at Arlington) SCF for OCCA September 17, 2020 29 / 40



SCF algorithm for OMCCA (3)

The key step to maximize g({X̂i}) by either the Jacobi- or Gauss-Seidel-style

updating scheme is to maximize it, for any s ∈ {1, · · · , ℓ}, over X̂s while keeping

all other X̂j for j 6= s constant.

That is equivalent to

max
X̂s∈Ons×k

tr(X̂T
s Ds)√

tr(X̂T
s Σ

2
sX̂s)

, (20)

where Ds({X̂i}i6=s) = ΣsV
T
s

∑

j 6=s

ρsj
VjΣjX̂j√

tr(X̂T
j Σ

2
jX̂j)

.

Problem (20) is equivalent to solving:

max
X̂s∈Ons×k

tr2(X̂T
s Ds)

tr(X̂T
s Σ

2
sX̂s)

. (21)
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Algorithm 3. RCOMCCA: Range Constrained OMCCA

Input: {Si ∈ Rni×q} (each Si centered), integer k, and tolerance ǫ;
Output: {Xi ∈ Oni×k} that maximizes f({Xi}).
1: compute SVDs in (19);

2: pick an initial approximation X̂
(0)
1 ;

3: ν = 0, g = 0;
4: repeat

5: g0 = g; g = 0;
6: for s = 1 to ℓ do

7: compute the next {X̂
(ν+1)
s } by solving (21), where either

Ds = Ds({X̂
(ν)
i }i6=s) for Jacobi-style updating, or

Ds = Ds(X̂
(ν+1)
1 , . . . , X̂

(ν+1)
s−1 , X̂

(ν)
s+1, . . . , X̂

(ν)
ℓ ) for Gauss-Seidel-style

updating;
8: g = g + gs, where gs is the computed optimal objective value of (21).
9: end for

10: ν = ν + 1;
11: until |g − g0| ≤ ǫg;

12: return Xi = UiX̂
(ν)
i for 1 ≤ i ≤ ℓ.
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Application 1: Multi-label classification

Multi-class classification: assign an object (vector) xxx to one of nc classes, often
by attaching a label y ∈ {1, 2, . . . , nc}.

Multi-label classification: assign an object (vector) xxx to one or more of nc classes,
often by attaching an indicator vector yyy ∈ Rnc of 0s and 1s in such a way that xxx
belongs to class i if yyy(i) = 1 and doesn’t otherwise.

X ∈ R
n×q contains q vectors of size n, and Y ∈ R

nc×q consists of q
corresponding indicator vectors. CCA for multi-label classification popularly treats
X as one view and Y as the other.

We will use ML-kNN1 as our backend multi-label classifier.

Table: Multi-label classification datasets

Dataset Samples (q) Attributes (n) labels (nc)
birds 645 260 19

emotions 593 72 6

1http://lamda.nju.edu.cn/files/MLkNN.rar
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Table: Results on two datasets by 5 methods (40% for training and 60% for
testing over 10 random splits). Best results are in bold.

dataset method OneError Average Precision

birds

OCCA-scf 0.4964 ± 0.0201 0.5452 ± 0.0118

CCA 0.8110 ± 0.0302 0.3087 ± 0.0192
LS-CCA 0.8110 ± 0.0302 0.3084 ± 0.0191

OCCA-SSY 0.5978 ± 0.0269 0.4722 ± 0.0182
ML-kNN 0.7101 ± 0.0136 0.3942 ± 0.0108

emotions

OCCA-scf 0.3258 ± 0.0201 0.7640 ± 0.0118

CCA 0.3497 ± 0.0169 0.7443 ± 0.0126
LS-CCA 0.3385 ± 0.0182 0.7553 ± 0.0154

OCCA-SSY 0.3860 ± 0.0274 0.7190 ± 0.0172
ML-kNN 0.3983 ± 0.0169 0.6960 ± 0.0085

OneError: the average number of times the top-ranked label is not in
the set of proper labels of the instance (the smaller the better)

Average Precision: the average precision of labels ranked above a
particular label in the same label set. (the bigger the better)
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Application 2: Multi-view feature extraction

1-nearest neighbor classifier for evaluating classification accuracy performance.

CCA methods with varying k ∈ {3, 4, 5, 6} for mfeat, and
k ∈ {3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50} for other datasets.

Split data into training and testing with ratio 30/70. Results are based on the
average of 10 randomly drawn splits.

Six variants of RCOMCCA in total based on different weighting rule. For the
top-p weighting scheme, p ∈ {1, 3, 6} is used, and best results are reported.

We compare with MCCA (Nielsen, 2002) and OMCCA-SS (Shen and Sun, 2015).

Table: Multi-view datasets

Dataset Samples Multiple views classes
mfeat 2000 216;76;64;6;240;47 10

Caltech101-7 1474 254;512;1180;1008;64;1000 7
Caltech101-20 2386 254;512;1180;1008;64;1000 20
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Table: Means and standard deviations of accuracy (Parameter k used by CCA
methods to achieve the best accuracy is shown in the bracket).

mfeat Caltech101-7

view1 0.9513 ± 0.0053 0.9259 ± 0.0049
view2 0.7604 ± 0.0104 0.9443 ± 0.0051
view3 0.9293 ± 0.0043 0.9415 ± 0.0070
view4 0.6780 ± 0.0064 0.9287 ± 0.0105
view5 0.9630 ± 0.0025 0.7759 ± 0.0133
view6 0.7814 ± 0.0077 0.9152 ± 0.0059

MCCA 0.8679 ± 0.0073 (6) 0.8865 ± 0.0072 (15)
OMCCA-SS 0.8298 ± 0.0089 (6) 0.9493 ± 0.0024 (45)
RCOMCCA-G (uniform) 0.7634 ± 0.0134 (5) 0.8880 ± 0.0052 (50)
RCOMCCA-G (top-p) 0.9696 ± 0.0035 (5) 0.9664 ± 0.0060 (35)
RCOMCCA-G (tree) 0.9566 ± 0.0031 (6) 0.9392 ± 0.0043 (45)
RCOMCCA-J (uniform) 0.7540 ± 0.0121 (5) 0.8868 ± 0.0068 (30)
RCOMCCA-J (top-p) 0.9692 ± 0.0038 (5) 0.9649 ± 0.0029 (15)
RCOMCCA-J (tree) 0.9581 ± 0.0055 (6) 0.9474 ± 0.0041 (45)
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Figure: Accuracy and CPU time of MCCA methods on two datasets by varying
the reduced dimension k and the training ratio.
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Summary
An OCCA-SCF algorithm for solving trace-fractional matrix
optimization problem:

max
G∈On×k

η(G) with η(G) :=
tr(GTD)√
tr(GTAG)

,

where Stiefel manifold: On×k = {X ∈ Rn×k : XTX = Ik}.

An alternating iterative method for solving Orthogonal Canonical
Correlation Analysis (OCCA):

max
X∈On×k, Y ∈Om×k

tr(XTCY )√
tr(XTAX)

√
tr(Y TBY )

.

A new orthogonal multiset OCCA (OMCCA) model with integrated
weights for each pair of views and trace-fractional objective for
correlations between any two views.

Applications to two real world applications: multi-label classification
and multi-view feature extraction.
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