SCF Iteration for Orthogonal Canonical Correlation Analysis

Ren-Cang Li

Department of Mathematics University of Texas at Arlington

joint work with Lei-hong Zhang Li Wang Zhaojun Bai

September 17, 2020

Outline

1 Introduction to CCA

- Orthogonal CCA (OCCA)
- Submaximization Problem
- Orthogonal Multiset CCA (OMCCA)
- 5 Applications

Outline

Introduction to CCA

- 2 Orthogonal CCA (OCCA)
- 3 Submaximization Problem
- Orthogonal Multiset CCA (OMCCA)
- 5 Applications

Canonical Correlation Analysis (CCA) is a two-view multivariate statistical method (H. Hotelling, 1936), where the variables of observations is partitioned into two sets, i.e., two views of the data.

Data matrices $S_1 \in \mathbb{R}^{n \times q}$ (view 1, n features), $S_2 \in \mathbb{R}^{m \times q}$ (view 2, m features), q is the number of samples.

Both centralized: $S_i \mathbf{1}_q = 0$; otherwise, $S_i \leftarrow S_i - \frac{1}{q}(S_i \mathbf{1}_q) \mathbf{1}_q^{\mathrm{T}}$.

Canonical Variates $z_1 = S_1^T x_1$, $z_2 = S_2^T x_2$ defined in terms of Canonical Weight Vectors: $x_1 \in \mathbb{R}^n$, $x_2 \in \mathbb{R}^m$.

Canonical Correlation: $\rho(x_1, x_2) := \frac{z_1^T z_2}{||z_1||_2||z_2||_2} = \frac{x_1^T C_{1,2} x_2}{\sqrt{x_1^T C_{1,1} x_1} \sqrt{x_2^T C_{2,2} x_2}}$, where $C_{i,j} = S_i S_j^T$, (Cross-)Covariance.

$$\max_{\boldsymbol{x}_1, \boldsymbol{x}_2} \rho(\boldsymbol{x}_1, \boldsymbol{x}_2). \tag{1}$$

Canonical Correlation Analysis (CCA) is a two-view multivariate statistical method (H. Hotelling, 1936), where the variables of observations is partitioned into two sets, i.e., two views of the data.

Data matrices $S_1 \in \mathbb{R}^{n \times q}$ (view 1, *n* features), $S_2 \in \mathbb{R}^{m \times q}$ (view 2, *m* features), q is the number of samples.

Both centralized: $S_i \mathbf{1}_q = 0$; otherwise, $S_i \leftarrow S_i - \frac{1}{q}(S_i \mathbf{1}_q) \mathbf{1}_q^{\mathrm{T}}$.

Canonical Variates $\boldsymbol{z}_1 = S_1^{\mathrm{T}} \boldsymbol{x}_1$, $\boldsymbol{z}_2 = S_2^{\mathrm{T}} \boldsymbol{x}_2$ defined in terms of Canonical Weight Vectors: $\boldsymbol{x}_1 \in \mathbb{R}^n$, $\boldsymbol{x}_2 \in \mathbb{R}^m$.

Canonical Correlation: $\rho(x_1, x_2) := \frac{z_1^T z_2}{||z_1||_2||z_2||_2} = \frac{x_1^T C_{1,2} x_2}{\sqrt{x_1^T C_{1,1} x_1} \sqrt{x_2^T C_{2,2} x_2}},$ where $C_{i,j} = S_i S_j^T$, (Cross-)Covariance.

$$\max_{\boldsymbol{x}_1, \boldsymbol{x}_2} \rho(\boldsymbol{x}_1, \boldsymbol{x}_2). \tag{1}$$

Canonical Correlation Analysis (CCA) is a two-view multivariate statistical method (H. Hotelling, 1936), where the variables of observations is partitioned into two sets, i.e., two views of the data.

Data matrices $S_1 \in \mathbb{R}^{n \times q}$ (view 1, *n* features), $S_2 \in \mathbb{R}^{m \times q}$ (view 2, *m* features), *q* is the number of samples.

Both centralized: $S_i \mathbf{1}_q = 0$; otherwise, $S_i \leftarrow S_i - \frac{1}{q} (S_i \mathbf{1}_q) \mathbf{1}_q^{\mathrm{T}}$.

Canonical Variates $\boldsymbol{z}_1 = S_1^T \boldsymbol{x}_1$, $\boldsymbol{z}_2 = S_2^T \boldsymbol{x}_2$ defined in terms of Canonical Weight Vectors: $\boldsymbol{x}_1 \in \mathbb{R}^n$, $\boldsymbol{x}_2 \in \mathbb{R}^m$.

Canonical Correlation: $\rho(\mathbf{x}_1, \mathbf{x}_2) := \frac{\mathbf{z}_1^T \mathbf{z}_2}{||\mathbf{z}_1||_2||\mathbf{z}_2||_2} = \frac{\mathbf{x}_1^T C_{1,2} \mathbf{x}_2}{\sqrt{\mathbf{x}_1^T C_{1,1} \mathbf{x}_1} \sqrt{\mathbf{x}_2^T C_{2,2} \mathbf{x}_2}},$ where $C_{i,j} = S_i S_j^T$, (Cross-)Covariance.

$$\max_{\boldsymbol{r}_1,\boldsymbol{x}_2}\rho(\boldsymbol{x}_1,\boldsymbol{x}_2).$$

Canonical Correlation Analysis (CCA) is a two-view multivariate statistical method (H. Hotelling, 1936), where the variables of observations is partitioned into two sets, i.e., two views of the data.

Data matrices $S_1 \in \mathbb{R}^{n \times q}$ (view 1, *n* features), $S_2 \in \mathbb{R}^{m \times q}$ (view 2, *m* features), *q* is the number of samples.

Both centralized: $S_i \mathbf{1}_q = 0$; otherwise, $S_i \leftarrow S_i - \frac{1}{q} (S_i \mathbf{1}_q) \mathbf{1}_q^{\mathrm{T}}$.

Canonical Variates $\boldsymbol{z}_1 = S_1^T \boldsymbol{x}_1$, $\boldsymbol{z}_2 = S_2^T \boldsymbol{x}_2$ defined in terms of Canonical Weight Vectors: $\boldsymbol{x}_1 \in \mathbb{R}^n$, $\boldsymbol{x}_2 \in \mathbb{R}^m$.

 $\begin{array}{l} \text{Canonical Correlation: } \rho(\pmb{x}_1, \pmb{x}_2) := \frac{\pmb{x}_1^{\text{T}} \pmb{x}_2}{||\pmb{z}_1||_2||\pmb{z}_2||_2} = \frac{\pmb{x}_1^{\text{T}} C_{1,2} \pmb{x}_2}{\sqrt{\pmb{x}_1^{\text{T}} C_{1,1} \pmb{x}_1} \sqrt{\pmb{x}_2^{\text{T}} C_{2,2} \pmb{x}_2}},\\ \text{where } C_{i,j} = S_i S_j^{\text{T}}, \text{ (Cross-)Covariance.} \end{array}$

$$\max_{\boldsymbol{x}_1, \boldsymbol{x}_2} \rho(\boldsymbol{x}_1, \boldsymbol{x}_2). \tag{1}$$

Single-vector CCA (1) has been extended to Canonical Weight Matrices. Canonical Weight Matrices: $X_1 \in \mathbb{R}^{n \times k}$, $X_2 \in \mathbb{R}^{m \times k}$.

Canonical Correlation: $f(X_1, X_2) = \frac{\operatorname{tr}(X_1^{\mathrm{T}} C_{1,2} X_2)}{\sqrt{\operatorname{tr}(X_1^{\mathrm{T}} C_{1,1} X_1)} \sqrt{\operatorname{tr}(X_2^{\mathrm{T}} C_{2,2} X_2)}},$ CCA in general seeks to maximize canonical correlation:

$$\max_{X_1, X_2} f(X_1, X_2), \text{ s.t. } X_i^{\mathrm{T}} C_{i,i} X_i = I_k, i = 1, 2,$$
(2)

Closed form solution in terms of SVD for $C_{1,1}^{-1/2}C_{1,2}C_{2,2}^{-1/2}$. Collectively, traditional CCA or, simply, CCA is referred to either (1) or (2).

Single-vector CCA (1) has been extended to Canonical Weight Matrices. Canonical Weight Matrices: $X_1 \in \mathbb{R}^{n \times k}$, $X_2 \in \mathbb{R}^{m \times k}$.

Canonical Correlation:
$$f(X_1, X_2) = \frac{\operatorname{tr}(X_1^{\mathrm{T}} C_{1,2} X_2)}{\sqrt{\operatorname{tr}(X_1^{\mathrm{T}} C_{1,1} X_1)} \sqrt{\operatorname{tr}(X_2^{\mathrm{T}} C_{2,2} X_2)}},$$

CCA in general seeks to maximize canonical correlation:

$$\max_{X_1, X_2} f(X_1, X_2), \text{ s.t. } X_i^{\mathrm{T}} C_{i,i} X_i = I_k, \, i = 1, 2,$$

Closed form solution in terms of SVD for $C_{1,1}^{-1/2}C_{1,2}C_{2,2}^{-1/2}$. Collectively, traditional CCA or, simply, CCA is referred to either (1) or (2).

Single-vector CCA (1) has been extended to Canonical Weight Matrices. Canonical Weight Matrices: $X_1 \in \mathbb{R}^{n \times k}$, $X_2 \in \mathbb{R}^{m \times k}$.

 $\begin{array}{l} \mbox{Canonical Correlation:} \ f(X_1,X_2) = \frac{{\rm tr}(X_1^{\rm T}C_{1,2}X_2)}{\sqrt{{\rm tr}(X_1^{\rm T}C_{1,1}X_1)}\sqrt{{\rm tr}(X_2^{\rm T}C_{2,2}X_2)}}, \\ \mbox{CCA in general seeks to maximize canonical correlation:} \end{array}$

$$\max_{X_1, X_2} f(X_1, X_2), \text{ s.t. } X_i^{\mathrm{T}} C_{i,i} X_i = I_k, i = 1, 2,$$
(2)

Closed form solution in terms of SVD for $C_{1,1}^{-1/2}C_{1,2}C_{2,2}^{-1/2}$. Collectively, traditional CCA or, simply, CCA is referred to either (1) or (2).

Single-vector CCA (1) has been extended to Canonical Weight Matrices. Canonical Weight Matrices: $X_1 \in \mathbb{R}^{n \times k}$, $X_2 \in \mathbb{R}^{m \times k}$.

Canonical Correlation: $f(X_1, X_2) = \frac{\operatorname{tr}(X_1^{\mathrm{T}}C_{1,2}X_2)}{\sqrt{\operatorname{tr}(X_1^{\mathrm{T}}C_{1,1}X_1)}\sqrt{\operatorname{tr}(X_2^{\mathrm{T}}C_{2,2}X_2)}},$ CCA in general seeks to maximize canonical correlation:

$$\max_{X_1, X_2} f(X_1, X_2), \text{ s.t. } X_i^{\mathrm{T}} C_{i,i} X_i = I_k, i = 1, 2,$$
(2)

Closed form solution in terms of SVD for $C_{1,1}^{-1/2}C_{1,2}C_{2,2}^{-1/2}$. Collectively, traditional CCA or, simply, CCA is referred to either (1) or (2).

Outline

Introduction to CCA

- Orthogonal CCA (OCCA)
 - 3 Submaximization Problem
 - Orthogonal Multiset CCA (OMCCA)
 - 5 Applications

Orthogonal CCA (OCCA)

Orthogonal CCA (OCCA) seeks to maximize the correlation:

$$\max_{X_1 \in \mathbb{O}^{n \times k}, X_2 \in \mathbb{O}^{m \times k}} f(X_1, X_2) \tag{3}$$

directly over orthonormal matrices in $\mathbb{O}^{n \times k} = \{X \in \mathbb{R}^{n \times k} : X^{\mathrm{T}}X = I_k\}.$

Different from CCA, OCCA preserves the covariance of the original data S_1 and S_2 while correlation is maximized.

Can use generic optimization methods over the product of the Stiefel manifolds, and indeed applied.

Essentially, they are classical steepest ascent, trust-region, nonlinear CG methods over the Euclidean space extended to Riemannian manifolds. These methods don't recognize any special structure in f: less efficient, low accuracy, ...

P. Cunningham and Z. Ghahramani, Linear dimensionality reduction: Survey, insights, and generalizations, J. Mach. Learning Res., 16(2015), 2859–2900.

P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms On Matrix Manifolds. Princeton University Press, 2008.

Orthogonal CCA (OCCA)

Orthogonal CCA (OCCA) seeks to maximize the correlation:

$$\max_{X_1 \in \mathbb{O}^{n \times k}, X_2 \in \mathbb{O}^{m \times k}} f(X_1, X_2) \tag{3}$$

directly over orthonormal matrices in $\mathbb{O}^{n \times k} = \{X \in \mathbb{R}^{n \times k} : X^{\mathrm{T}}X = I_k\}.$

Different from CCA, OCCA preserves the covariance of the original data S_1 and S_2 while correlation is maximized.

Can use generic optimization methods over the product of the Stiefel manifolds, and indeed applied.

Essentially, they are classical steepest ascent, trust-region, nonlinear CG methods over the Euclidean space extended to Riemannian manifolds. These methods don't recognize any special structure in f: less efficient, low accuracy, ...

P. Cunningham and Z. Ghahramani, Linear dimensionality reduction: Survey, insights, and generalizations, *J. Mach. Learning Res.*, 16(2015), 2859–2900.

P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms On Matrix Manifolds. Princeton University Press, 2008.

OCCA model (abstraction)

Data of both views centralized in advance: $S_1 \mathbf{1}_q = 0$ and $S_2 \mathbf{1}_q$. Define

$$A = S_1 S_1^{\mathrm{T}} \in \mathbb{R}^{n \times n}, \ B = S_2 S_2^{\mathrm{T}} \in \mathbb{R}^{m \times m}, \ C = S_1 S_2^{\mathrm{T}} \in \mathbb{R}^{n \times m}.$$

OCCA: given an integer $1 \le k < \min\{m, n\}$ (usually $k \ll \min\{m, n\}$), solve

$$\max_{X \in \mathbb{O}^{n \times k}, Y \in \mathbb{O}^{m \times k}} f(X, Y) := \frac{\operatorname{tr}(X^{\mathrm{T}}CY)}{\sqrt{\operatorname{tr}(X^{\mathrm{T}}AX)}\sqrt{\operatorname{tr}(Y^{\mathrm{T}}BY)}}.$$
 (4)

Propose to maximize f(X, Y) alternatingly with respective to X and Y. Although the framework of the proposed numerical scheme is rather natural, novelty lies in the way how its core sub-maximization problems are solved.

Algorithm framework for 2-view OCCA

Algorithm 1. Alternating optimization scheme for (4)

The role of line 4 in Algorithm 1 is to make sure $X^{(\nu)}$ and $Y^{(\nu)}$ are best-aligned. In particular, $\operatorname{tr}(X^{(\nu)}{}^{\mathrm{T}}CY^{(\nu)}) > 0$ and maximized within the column spaces of $X^{(\nu)}$ and $Y^{(\nu)}$ at lines 2 & 3.

Algorithm framework for 2-view OCCA

Algorithm 1. Alternating optimization scheme for (4)

The role of line 4 in Algorithm 1 is to make sure $X^{(\nu)}$ and $Y^{(\nu)}$ are best-aligned. In particular, $\operatorname{tr}(X^{(\nu)}{}^{\mathrm{T}}CY^{(\nu)}) > 0$ and maximized within the column spaces of $X^{(\nu)}$ and $Y^{(\nu)}$ at lines 2 & 3.

Convergence Theorem

Let $\{X_{\rm opt},Y_{\rm opt}\}$ be the optimal solution to (4) and $\{X^{(\nu)},Y^{(\nu)}\}$ be the ν th approximation of Algorithm 1. Then

- (i) $X_{opt}^{T}CY_{opt}$ is symmetric and positive semidefinite.
- (ii) $(X^{(\nu)})^{\mathrm{T}}CY^{(\nu)}$ is symmetric and positive semidefinite for $\nu \geq 1$, and thus for any limit pair $\{X_*, Y_*\}$ of $\{X^{(\nu)}, Y^{(\nu)}\}_{\nu=1}^{\infty}$, $X_*^{\mathrm{T}}CY_*$ is symmetric and positive semidefinite.

(iii) The sequence $\{f(X^{(\nu)},Y^{(\nu)})\}_{\nu=1}^\infty$ is monotonically increasing and converges.

Efficiency of Algorithm 1 relies heavily on solving the sub-maximization problems at Lines 2 and 3.

Abstractly, they are of the following type

$$\max_{\in \mathbb{O}^{n \times k}} \eta(X) \quad \text{with } \eta(X) := \frac{\mathsf{t}}{\sqrt{\mathsf{t}}}$$

 $\frac{D}{AX}$,

where $0 \neq D \in \mathbb{R}^{n \times k}$ and $A \succ 0$.

Convergence Theorem

Let $\{X_{\rm opt},Y_{\rm opt}\}$ be the optimal solution to (4) and $\{X^{(\nu)},Y^{(\nu)}\}$ be the ν th approximation of Algorithm 1. Then

- (i) $X_{opt}^{T}CY_{opt}$ is symmetric and positive semidefinite.
- (ii) $(X^{(\nu)})^{\mathrm{T}}CY^{(\nu)}$ is symmetric and positive semidefinite for $\nu \geq 1$, and thus for any limit pair $\{X_*, Y_*\}$ of $\{X^{(\nu)}, Y^{(\nu)}\}_{\nu=1}^{\infty}$, $X_*^{\mathrm{T}}CY_*$ is symmetric and positive semidefinite.
- (iii) The sequence $\{f(X^{(\nu)},Y^{(\nu)})\}_{\nu=1}^\infty$ is monotonically increasing and converges.

Efficiency of Algorithm 1 relies heavily on solving the sub-maximization problems at Lines 2 and 3.

Abstractly, they are of the following type

$$\max_{X \in \mathbb{O}^{n \times k}} \eta(X) \quad \text{with } \eta(X) := \frac{\operatorname{tr}(X^{\mathrm{T}}D)}{\sqrt{\operatorname{tr}(X^{\mathrm{T}}AX)}},\tag{5}$$

where $0 \neq D \in \mathbb{R}^{n \times k}$ and $A \succ 0$.

Local but non-global maximizers

Problem (5) may admit local but non-global maximizers. **Example.** Consider the case with n = 5, k = 2,

$$A = \begin{bmatrix} 4 & 0 & -5 & -5 & 1 \\ 0 & 2 & 1 & -1 & 1 \\ -5 & 1 & 9 & 5 & 1 \\ -5 & -1 & 5 & 18 & 4 \\ -1 & 1 & 1 & 4 & 2 \end{bmatrix} \text{ and } D = \begin{bmatrix} -1 & 1 \\ 0 & 0 \\ 0 & 2 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$$

By calling MATLAB's fmincon, we find two (numerical) local maximizers:

$$X_{+} = \begin{bmatrix} -0.358041496119094 & 0.770164268103322 \\ -0.453284095949462 & -0.326431512218038 \\ -0.091335437376569 & 0.497561512998402 \\ -0.269574025133855 & 0.008593213179154 \\ 0.765066989399257 & 0.229451880441015 \end{bmatrix}$$

,

Local but non-global maximizers (cont'd)

$$X_* = \begin{bmatrix} -0.506648923972689 & 0.664385053189626 \\ 0.619602876311725 & 0.312889763321350 \\ -0.337893503149209 & 0.384494340924914 \\ 0.103073503143856 & 0.210902556071053 \\ -0.484358314662567 & -0.518050876600301 \end{bmatrix}$$

 $\eta(X_+) \approx 1.517 < \eta(X_*) \approx 3.187.$

We argue that they are (numerical) local maximizers:

- $\|\operatorname{grad} \eta(X)\|_F \leq 10^{-6}$ (on $\mathbb{O}^{n \times k}$) for $X = X_+$ or X_* ;
- Second order sufficient condition: verified at 10^7 random tangent "vectors" in $\mathcal{T}_X \mathbb{O}^{n \times k}$ for both X_+ and X_* .

This example numerically shows (5) in general admits local but non-global maximizers.

Outline

Introduction to CCA

- 2 Orthogonal CCA (OCCA)
- Submaximization Problem
 - Orthogonal Multiset CCA (OMCCA)
 - 5 Applications

SCF Iteration

$$\max_{X \in \mathbb{O}^{n \times k}} \eta(X) \quad \text{with } \eta(X) := \frac{\operatorname{tr}(X^{\mathrm{T}}D)}{\sqrt{\operatorname{tr}(X^{\mathrm{T}}AX)}}.$$

Gradient:

$$\operatorname{grad} \eta(X) = \Pi_X \left(\frac{\partial \eta(X)}{\partial X} \right) \in \mathcal{T}_X \mathbb{O}^{n \times k},$$

where $\Pi_X(Z) = Z - X \operatorname{sym}(X^T Z)$ for $Z \in \mathbb{R}^{n \times k}$. By calculations,

$$\frac{\partial \eta(X)}{\partial X} = \frac{1}{\sqrt{\operatorname{tr}(X^{\mathrm{T}}AX)}} D - \frac{\operatorname{tr}(X^{\mathrm{T}}D)}{[\operatorname{tr}(X^{\mathrm{T}}AX)]^{3/2}} AX$$

$$\frac{[\operatorname{tr}(X^{\mathrm{T}}AX)]^{3/2}}{\operatorname{tr}(X^{\mathrm{T}}D)}\operatorname{grad} \eta(X) = [\xi(X)D - AX] - X\Lambda(X) \in \mathbb{R}^{n \times k},$$

where $\xi(X) = \frac{\operatorname{tr}(X^{\mathrm{T}}AX)}{\operatorname{tr}(X^{\mathrm{T}}D)},$

$$\Lambda(X) = \xi(X) \frac{1}{2} \left[X^{\mathrm{T}} D + D^{\mathrm{T}} X \right] - X^{\mathrm{T}} A X \in \mathbb{R}^{k \times k}.$$

(5)

SCF Iteration

$$\max_{X \in \mathbb{O}^{n \times k}} \eta(X) \quad \text{with } \eta(X) := \frac{\operatorname{tr}(X^{\mathrm{T}}D)}{\sqrt{\operatorname{tr}(X^{\mathrm{T}}AX)}}.$$
(5)

Gradient:

grad
$$\eta(X) = \Pi_X \left(\frac{\partial \eta(X)}{\partial X}\right) \in \mathcal{T}_X \mathbb{O}^{n \times k},$$
 (6)

where $\Pi_X(Z) = Z - X \operatorname{sym}(X^T Z)$ for $Z \in \mathbb{R}^{n \times k}$. By calculations,

$$\frac{\partial \eta(X)}{\partial X} = \frac{1}{\sqrt{\operatorname{tr}(X^{\mathrm{T}}AX)}} D - \frac{\operatorname{tr}(X^{\mathrm{T}}D}{[\operatorname{tr}(X^{\mathrm{T}}AX)]^{3/2}} AX,$$

 $\frac{[\operatorname{tr}(X^{\mathrm{T}}AX)]^{3/2}}{\operatorname{tr}(X^{\mathrm{T}}D)}\operatorname{grad}\eta(X) = [\xi(X)D - AX] - X\Lambda(X) \in \mathbb{R}^{n \times k},$

$$\Lambda(X) = \xi(X) \frac{1}{2} \left[X^{\mathrm{T}} D + D^{\mathrm{T}} X \right] - X^{\mathrm{T}} A X \in \mathbb{R}^{k \times k}.$$

SCF Iteration

$$\max_{X \in \mathbb{O}^{n \times k}} \eta(X) \quad \text{with } \eta(X) := \frac{\operatorname{tr}(X^{\mathrm{T}}D)}{\sqrt{\operatorname{tr}(X^{\mathrm{T}}AX)}}.$$
(5)

Gradient:

grad
$$\eta(X) = \Pi_X \left(\frac{\partial \eta(X)}{\partial X}\right) \in \mathcal{T}_X \mathbb{O}^{n \times k},$$
 (6)

where $\Pi_X(Z) = Z - X \operatorname{sym}(X^T Z)$ for $Z \in \mathbb{R}^{n \times k}$. By calculations,

$$\frac{\partial \eta(X)}{\partial X} = \frac{1}{\sqrt{\operatorname{tr}(X^{\mathrm{T}}AX)}} D - \frac{\operatorname{tr}(X^{\mathrm{T}}D)}{[\operatorname{tr}(X^{\mathrm{T}}AX)]^{3/2}} AX,$$

$$\begin{aligned} \frac{[\operatorname{tr}(X^{\mathrm{T}}AX)]^{3/2}}{\operatorname{tr}(X^{\mathrm{T}}D)} \operatorname{grad} \eta(X) &= [\xi(X)D - AX] - X\Lambda(X) \in \mathbb{R}^{n \times k}, \\ \text{where } \xi(X) &= \frac{\operatorname{tr}(X^{\mathrm{T}}AX)}{\operatorname{tr}(X^{\mathrm{T}}D)}, \\ \Lambda(X) &= \xi(X)\frac{1}{2} \left[X^{\mathrm{T}}D + D^{\mathrm{T}}X \right] - X^{\mathrm{T}}AX \in \mathbb{R}^{k \times k}. \end{aligned}$$

(7)

Lemma 1. First Order KKT Condition
If X is a maximizer of (5), then
$$X^{T}D = D^{T}X$$
 and
 $\xi(X)D - AX = X\Lambda(X).$

Condition (8) is a type of nonlinear Sylvester equation but with the orthogonality constraint $X^{T}X = I_k$. Not clear how to solve.

Turn it into nonlinear eigenvalue problem (NEPv):

$$E(X)X = X\widehat{\Lambda}(X), \tag{9}$$

where $\widehat{\Lambda}(X)^{\mathrm{T}} = \widehat{\Lambda}(X)$ and

$$E(X) := \xi(X)(DX^{\mathrm{T}} + XD^{\mathrm{T}}) - A.$$

Evidently, E(X) is always symmetric. It is implied $\widehat{\Lambda}(X) = X^{\mathrm{T}}E(X)X \in \mathbb{R}^{k \times k}$.

Lemma 2. Equivalent KKT Condition

Suppose $X \in \mathbb{O}^{n \times k}$. Then X satisfies (8) if and only if X is an eigenbasis matrix of E(X), i.e., X satisfies (9).

(8)

Lemma 1. First Order KKT Condition
If X is a maximizer of (5), then
$$X^{T}D = D^{T}X$$
 and
 $\xi(X)D - AX = X\Lambda(X).$ (8)

Condition (8) is a type of nonlinear Sylvester equation but with the orthogonality constraint $X^{T}X = I_k$. Not clear how to solve.

Turn it into nonlinear eigenvalue problem (NEPv):

$$E(X)X = X\widehat{\Lambda}(X),$$
(9)

where $\widehat{\Lambda}(X)^{\mathrm{T}} = \widehat{\Lambda}(X)$ and

$$E(X) := \xi(X)(DX^{\mathrm{T}} + XD^{\mathrm{T}}) - A.$$

Evidently, E(X) is always symmetric. It is implied $\widehat{\Lambda}(X) = X^{T}E(X)X \in \mathbb{R}^{k \times k}$

Lemma 2. Equivalent KKT Condition

Suppose $X \in \mathbb{O}^{n \times k}$. Then X satisfies (8) if and only if X is an eigenbasis matrix of E(X), i.e., X satisfies (9).

Rencang Li (University of Texas at Arlington)

Lemma 1. First Order KKT Condition
If X is a maximizer of (5), then
$$X^{T}D = D^{T}X$$
 and
 $\xi(X)D - AX = X\Lambda(X).$ (8)

Condition (8) is a type of nonlinear Sylvester equation but with the orthogonality constraint $X^{T}X = I_k$. Not clear how to solve.

Turn it into nonlinear eigenvalue problem (NEPv):

$$E(X)X = X\widehat{\Lambda}(X),$$
(9)

where $\widehat{\Lambda}(X)^{\mathrm{T}} = \widehat{\Lambda}(X)$ and

$$E(X) := \xi(X)(DX^{\mathrm{T}} + XD^{\mathrm{T}}) - A.$$

Evidently, E(X) is always symmetric. It is implied $\widehat{\Lambda}(X) = X^{\mathrm{T}}E(X)X \in \mathbb{R}^{k \times k}$.

Lemma 2. Equivalent KKT Condition

Suppose $X \in \mathbb{O}^{n \times k}$. Then X satisfies (8) if and only if X is an eigenbasis matrix of E(X), i.e., X satisfies (9).

Lemma 1. First Order KKT Condition
If X is a maximizer of (5), then
$$X^{T}D = D^{T}X$$
 and
 $\xi(X)D - AX = X\Lambda(X).$ (8)

Condition (8) is a type of nonlinear Sylvester equation but with the orthogonality constraint $X^{T}X = I_k$. Not clear how to solve.

Turn it into nonlinear eigenvalue problem (NEPv):

$$E(X)X = X\widehat{\Lambda}(X),$$
(9)

where $\widehat{\Lambda}(X)^{\mathrm{T}} = \widehat{\Lambda}(X)$ and

$$E(X) := \xi(X)(DX^{\mathrm{T}} + XD^{\mathrm{T}}) - A.$$

Evidently, E(X) is always symmetric. It is implied $\widehat{\Lambda}(X) = X^{\mathrm{T}}E(X)X \in \mathbb{R}^{k \times k}$.

Lemma 2. Equivalent KKT Condition

Suppose $X \in \mathbb{O}^{n \times k}$. Then X satisfies (8) if and only if X is an eigenbasis matrix of E(X), i.e., X satisfies (9).

A self-consistent-field (SCF) iteration

Necessary condition of a global maximizer for (5)

If X_{opt} is a global maximizer to (5), then X_{opt} is an orthonormal eigenbasis matrix associated with the k largest eigenvalues of $E(X_{opt})$.

Algorithm 2. An SCF iteration for solving (5)

Input: $X_{(0)} \in \mathbb{O}^{n \times k}$;

Output: approximate maximizer X to (5).

1: for $\nu = 1, 2, \ldots$ until convergence do

2: construct
$$E_{(\nu)} = E(X_{(\nu-1)})$$
 as in (9);

- 3: compute an orthonormal eigenbasis matrix $X_{(\nu)}$ associated with the k largest eigenvalues of $E_{(\nu)}$;
- 4: compute SVD: $X_{(\nu)}^{\mathrm{T}}D = U\Sigma V^{\mathrm{T}}$ and update $X_{(\nu)} \leftarrow X_{(\nu)}UV^{\mathrm{T}}$;
- 5: end for
- 6: **return.** the last $X_{(\nu)}$ as a numerical maximizer of (5)

A self-consistent-field (SCF) iteration

Necessary condition of a global maximizer for (5)

If X_{opt} is a global maximizer to (5), then X_{opt} is an orthonormal eigenbasis matrix associated with the k largest eigenvalues of $E(X_{opt})$.

Algorithm 2. An SCF iteration for solving (5)

Input: $X_{(0)} \in \mathbb{O}^{n \times k}$;

Output: approximate maximizer X to (5).

1: for $\nu=1,2,\ldots$ until convergence ${\rm do}$

2: construct
$$E_{(\nu)} = E(X_{(\nu-1)})$$
 as in (9);

3: compute an orthonormal eigenbasis matrix $X_{(\nu)}$ associated with the k largest eigenvalues of $E_{(\nu)}$;

4: compute SVD:
$$X_{(\nu)}^{\mathrm{T}}D = U\Sigma V^{\mathrm{T}}$$
 and update $X_{(\nu)} \leftarrow X_{(\nu)}UV^{\mathrm{T}}$;

- 5: end for
- 6: **return.** the last $X_{(\nu)}$ as a numerical maximizer of (5).

Comments on Algorithm 2 (SCF)

Use full eigen-decomposition of E for small n (e.g., ≤ 200); use an iterative method for large n such as LOBPCG, Inverse-free (Golub+Ye), LOBPECG, ...

The SCF iteration stops if

$$\frac{\operatorname{tr}(X^{\mathrm{T}}D)}{[\operatorname{tr}(X^{\mathrm{T}}AX)]^{3/2}} \frac{\|\operatorname{grad} \eta(G_{(\nu)})\|_{1}}{\|A\|_{1} + \|D\|_{1}} \le \epsilon_{\operatorname{scf}}$$

with, e.g., $\epsilon_{\rm scf} = 10^{-5}$.

Comments on Algorithm 2 (SCF)

Use full eigen-decomposition of E for small n (e.g., ≤ 200); use an iterative method for large n such as LOBPCG, Inverse-free (Golub+Ye), LOBPECG, ...

The SCF iteration stops if

$$\frac{\operatorname{tr}(X^{\mathrm{T}}D)}{[\operatorname{tr}(X^{\mathrm{T}}AX)]^{3/2}} \frac{\|\operatorname{grad} \eta(G_{(\nu)})\|_{1}}{\|A\|_{1} + \|D\|_{1}} \le \epsilon_{\operatorname{scf}}$$

with, e.g., $\epsilon_{\rm scf} = 10^{-5}$.

Weak Convergence Theorem

Let $\{X_{(\nu)}\}$ be generated by the SCF iteration (Algorithm 2).

(i) For each
$$\nu \ge 1$$
, $D^{\mathrm{T}}X_{(\nu)} \succeq 0$ and $\operatorname{tr}(X_{(\nu)}^{\mathrm{T}}D) = \sum_{j=1}^{k} \sigma_j(X_{(\nu)}^{\mathrm{T}}D)$;

(ii) $\{\eta(X_{(\nu)})\}$ is monotonically increasing and convergent;

(iii) If $\operatorname{tr}(X_{(\nu)}^{\mathrm{T}}E(X_{(\nu-1)})X_{(\nu)}) \ge \operatorname{tr}(X_{(\nu-1)}^{\mathrm{T}}E(X_{(\nu-1)})X_{(\nu-1)}),$ (10) then $\eta(X_{(\nu-1)}) \le \eta(X_{(\nu)})$; If (10) is strict, then also $\eta(X_{(\nu-1)}) < \eta(X_{(\nu)})$;

(iv)
$$\{X_{(\nu)}\}$$
 has a convergent subsequence $\{X_{(\nu)}\}_{\nu\in\mathcal{I}}$;

(v) Let $\{X_{(\nu)}\}_{\nu\in\mathcal{I}}$ be any convergent subsequence of $\{X_{(\nu)}\}$ with the accumulation point X_* satisfying

$$\zeta = \lambda_k(E(X_*)) - \lambda_{k+1}(E(X_*)) > 0.$$
(11)

Then X_* satisfies the first order optimality condition and also the necessary condition for a global minimizer.

Weak Convergence Theorem

Let $\{X_{(\nu)}\}$ be generated by the SCF iteration (Algorithm 2).

(i) For each
$$\nu \ge 1$$
, $D^{\mathrm{T}}X_{(\nu)} \succeq 0$ and $\operatorname{tr}(X_{(\nu)}^{\mathrm{T}}D) = \sum_{j=1}^{k} \sigma_j(X_{(\nu)}^{\mathrm{T}}D)$;

(ii) $\{\eta(X_{(\nu)})\}$ is monotonically increasing and convergent;

(iii) If
$$\operatorname{tr}(X_{(\nu)}^{\mathrm{T}} E(X_{(\nu-1)})X_{(\nu)}) \ge \operatorname{tr}(X_{(\nu-1)}^{\mathrm{T}} E(X_{(\nu-1)})X_{(\nu-1)}),$$
 (10)

then $\eta(X_{(\nu-1)}) \leq \eta(X_{(\nu)})$; If (10) is strict, then also $\eta(X_{(\nu-1)}) < \eta(X_{(\nu)})$;

(iv) $\{X_{(\nu)}\}$ has a convergent subsequence $\{X_{(\nu)}\}_{\nu\in\mathcal{I}}$;

(v) Let $\{X_{(\nu)}\}_{\nu\in\mathcal{I}}$ be any convergent subsequence of $\{X_{(\nu)}\}$ with the accumulation point X_* satisfying

$$\zeta = \lambda_k(E(X_*)) - \lambda_{k+1}(E(X_*)) > 0.$$
(11)

Then X_* satisfies the first order optimality condition and also the necessary condition for a global minimizer.

Rencang Li (University of Texas at Arlington

SCF for OCCA

Weak Convergence Theorem

Let $\{X_{(\nu)}\}$ be generated by the SCF iteration (Algorithm 2).

(i) For each
$$\nu \ge 1$$
, $D^{\mathrm{T}}X_{(\nu)} \succeq 0$ and $\operatorname{tr}(X_{(\nu)}^{\mathrm{T}}D) = \sum_{j=1}^{k} \sigma_j(X_{(\nu)}^{\mathrm{T}}D)$;

(ii) $\{\eta(X_{(\nu)})\}$ is monotonically increasing and convergent;

(iii) If
$$\operatorname{tr}(X_{(\nu)}^{\mathrm{T}} E(X_{(\nu-1)})X_{(\nu)}) \ge \operatorname{tr}(X_{(\nu-1)}^{\mathrm{T}} E(X_{(\nu-1)})X_{(\nu-1)}),$$
 (10)

then $\eta(X_{(\nu-1)}) \leq \eta(X_{(\nu)})$; If (10) is strict, then also $\eta(X_{(\nu-1)}) < \eta(X_{(\nu)})$;

(iv)
$$\{X_{(\nu)}\}\$$
 has a convergent subsequence $\{X_{(\nu)}\}_{\nu\in\mathcal{I}}$;

(v) Let $\{X_{(\nu)}\}_{\nu\in\mathcal{I}}$ be any convergent subsequence of $\{X_{(\nu)}\}$ with the accumulation point X_* satisfying

$$\zeta = \lambda_k(E(X_*)) - \lambda_{k+1}(E(X_*)) > 0.$$
(11)

Then X_* satisfies the first order optimality condition and also the necessary condition for a global minimizer.

Rencang Li (University of Texas at Arlington

SCF for OCCA
Convergence (cont'd)

Strong Convergence Theorem

Let $\{X_{(\nu)}\}$ be generated by the SCF iteration (Algorithm 2), and let X_* be an accumulation point of $\{X_{(\nu)}\}$. Suppose that $\mathcal{R}(X_*)$ is an isolated accumulation point of $\{\mathcal{R}(X_{(\nu)})\}_{\nu=0}^{\infty}$.

- (i) $\{\mathcal{R}(X_{(\nu)})\}_{\nu=0}^{\infty}$ converges to $\mathcal{R}(X_*)$.
- (ii) If also $\operatorname{rank}(X_*^{\mathrm{T}}D) = k$, then $\{X_{(\nu)}\}_{\nu=0}^{\infty}$ converges to X_* .

A random example for Algorithm 2

Earlier example with local minimizers

Fisher's linear discriminant analysis (LDA): given symmetric $B, A \in \mathbb{R}^{n \times n}$ and $A \succ 0$, solve

$$\max_{X \in \mathbb{O}^{n \times k}} \frac{\operatorname{tr}(X^{\mathrm{T}}BX)}{\operatorname{tr}(X^{\mathrm{T}}AX)}.$$
(12)

Equivalent to

$$H(X)X := \left(B - \frac{\operatorname{tr}(X^{\mathrm{T}}BX)}{\operatorname{tr}(X^{\mathrm{T}}AX)}A\right) = X(X^{\mathrm{T}}H(X)X) =: X\Lambda(X).$$
(13)

$$H(X_{\nu-1})X_{\nu} = X_{\nu}\Lambda(X_{\nu}) \text{ for } \nu = 1, 2, \dots$$
 (14)

- (12) has global maximizers, but no local maximizer;
- X is a global maximizer if and only if the eigenvalues of Λ(X) consist of largest k eigenvalues of H(X);
- SCF (14) always converges and converges quadratically!

Fisher's linear discriminant analysis (LDA): given symmetric $B,A\in\mathbb{R}^{n\times n}$ and $A\succ 0,$ solve

$$\max_{X \in \mathbb{O}^{n \times k}} \frac{\operatorname{tr}(X^{\mathrm{T}}BX)}{\operatorname{tr}(X^{\mathrm{T}}AX)}.$$
(12)

Equivalent to

$$H(X)X := \left(B - \frac{\operatorname{tr}(X^{\mathrm{T}}BX)}{\operatorname{tr}(X^{\mathrm{T}}AX)}A\right) = X(X^{\mathrm{T}}H(X)X) =: X\Lambda(X).$$
(13)

$$H(X_{\nu-1})X_{\nu} = X_{\nu}\Lambda(X_{\nu}) \quad \text{for } \nu = 1, 2, \dots$$
 (14)

- (12) has global maximizers, but no local maximizer;
- X is a global maximizer if and only if the eigenvalues of Λ(X) consist of largest k eigenvalues of H(X);
- SCF (14) always converges and converges quadratically!

Fisher's linear discriminant analysis (LDA): given symmetric $B,A\in\mathbb{R}^{n\times n}$ and $A\succ 0,$ solve

$$\max_{X \in \mathbb{O}^{n \times k}} \frac{\operatorname{tr}(X^{\mathrm{T}}BX)}{\operatorname{tr}(X^{\mathrm{T}}AX)}.$$
(12)

Equivalent to

$$H(X)X := \left(B - \frac{\operatorname{tr}(X^{\mathrm{T}}BX)}{\operatorname{tr}(X^{\mathrm{T}}AX)}A\right) = X(X^{\mathrm{T}}H(X)X) =: X\Lambda(X).$$
(13)

$$H(X_{\nu-1})X_{\nu} = X_{\nu}\Lambda(X_{\nu}) \quad \text{for } \nu = 1, 2, \dots$$
 (14)

- (12) has global maximizers, but no local maximizer;
- X is a global maximizer if and only if the eigenvalues of Λ(X) consist of largest k eigenvalues of H(X);
- SCF (14) always converges and converges quadratically!

Fisher's linear discriminant analysis (LDA): given symmetric $B,A\in\mathbb{R}^{n\times n}$ and $A\succ 0,$ solve

$$\max_{X \in \mathbb{O}^{n \times k}} \frac{\operatorname{tr}(X^{\mathrm{T}}BX)}{\operatorname{tr}(X^{\mathrm{T}}AX)}.$$
(12)

Equivalent to

$$H(X)X := \left(B - \frac{\operatorname{tr}(X^{\mathrm{T}}BX)}{\operatorname{tr}(X^{\mathrm{T}}AX)}A\right) = X(X^{\mathrm{T}}H(X)X) =: X\Lambda(X).$$
(13)

$$H(X_{\nu-1})X_{\nu} = X_{\nu}\Lambda(X_{\nu}) \quad \text{for } \nu = 1, 2, \dots$$
 (14)

- (12) has global maximizers, but no local maximizer;
- X is a global maximizer if and only if the eigenvalues of Λ(X) consist of largest k eigenvalues of H(X);
- SCF (14) always converges and converges quadratically!

Digression: SCF for LDA

- L.-H. Zhang, L.-Z. Liao, and M. K. Ng. Fast algorithms for the generalized Foley-Sammon discriminant analysis. *SIAM J. Matrix Anal. Appl.*, 31(4):1584–1605, 2010.
- L.-H. Zhang, W. Yang, and L.-Z. Liao. A note on the trace quotient problem. *Opt. Lett.*, 8:1637–1645, 2014.
- Y. Cai, L.-H. Zhang, Z. Bai, and R.-C. Li, On an eigenvector-dependent nonlinear eigenvalue problem. *SIAM J. Matrix Anal. Appl.*, 39:1360–1382, 2018.

Rencang Li (University of Texas at Arlington)

SCF for OCCA

Outline

Introduction to CCA

- 2 Orthogonal CCA (OCCA)
- 3 Submaximization Problem
- Orthogonal Multiset CCA (OMCCA)
 - 5 Applications

Multiset CCA (MCCA) is to analyze linear relationships among more than two canonical variates, as a generalization of traditional two-view CCA.

Widely used model: Given ℓ datasets in the form of matrices

$$S_i \in \mathbb{R}^{n_i \times q} \quad \text{for } i = 1, 2, \dots, \ell,$$
 (15)

where n_i is the number of features in the *i*th view, and q is the number of sample data points.

Assume all S_i are centered, i.e., $S_i \mathbf{1}_q = 0$ for all i.

$$\max_{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_\ell} \sum_{i,j=1}^{\ell} \boldsymbol{x}_i^{\mathrm{T}} C_{i,j} \boldsymbol{x}_j \quad \text{subject to} \; \left\{ \begin{array}{cc} \text{either} & \sum_{i=1}^{\ell} \boldsymbol{x}_i^{\mathrm{T}} C_{i,i} \boldsymbol{x}_i = 1, \\ \text{or} & \boldsymbol{x}_i^{\mathrm{T}} C_{i,i} \boldsymbol{x}_i = 1, i = 1, \ldots, \ell. \end{array} \right.$$

Multiset CCA (MCCA) is to analyze linear relationships among more than two canonical variates, as a generalization of traditional two-view CCA.

Widely used model: Given ℓ datasets in the form of matrices

$$S_i \in \mathbb{R}^{n_i \times q} \quad \text{for } i = 1, 2, \dots, \ell,$$
 (15)

where n_i is the number of features in the *i*th view, and q is the number of sample data points.

Assume all S_i are centered, i.e., $S_i \mathbf{1}_q = 0$ for all i.

$$\max_{\boldsymbol{x}_1,...,\boldsymbol{x}_\ell} \sum_{i,j=1}^{\ell} \boldsymbol{x}_i^{\mathrm{T}} C_{i,j} \boldsymbol{x}_j \quad \text{subject to} \ \left\{ \begin{array}{cc} \text{either} & \sum_{i=1}^{\ell} \boldsymbol{x}_i^{\mathrm{T}} C_{i,i} \boldsymbol{x}_i = 1, \\ \text{or} & \boldsymbol{x}_i^{\mathrm{T}} C_{i,i} \boldsymbol{x}_i = 1, i = 1, \dots, \ell. \end{array} \right.$$

Multiset CCA (MCCA) is to analyze linear relationships among more than two canonical variates, as a generalization of traditional two-view CCA.

Widely used model: Given ℓ datasets in the form of matrices

$$S_i \in \mathbb{R}^{n_i \times q} \quad \text{for } i = 1, 2, \dots, \ell,$$
 (15)

where n_i is the number of features in the *i*th view, and q is the number of sample data points.

Assume all S_i are centered, i.e., $S_i \mathbf{1}_q = 0$ for all i.

$$\max_{\boldsymbol{x}_1,...,\boldsymbol{x}_\ell} \sum_{i,j=1}^{\ell} \boldsymbol{x}_i^{\mathrm{T}} C_{i,j} \boldsymbol{x}_j \quad \text{subject to} \begin{cases} \text{ either } & \sum_{i=1}^{\ell} \boldsymbol{x}_i^{\mathrm{T}} C_{i,i} \boldsymbol{x}_i = 1, \\ \text{ or } & \boldsymbol{x}_i^{\mathrm{T}} C_{i,i} \boldsymbol{x}_i = 1, i = 1, \dots, \ell. \end{cases}$$

Multiset CCA (MCCA) is to analyze linear relationships among more than two canonical variates, as a generalization of traditional two-view CCA.

Widely used model: Given ℓ datasets in the form of matrices

$$S_i \in \mathbb{R}^{n_i \times q} \quad \text{for } i = 1, 2, \dots, \ell,$$
 (15)

where n_i is the number of features in the *i*th view, and q is the number of sample data points.

Assume all S_i are centered, i.e., $S_i \mathbf{1}_q = 0$ for all i.

$$\max_{\boldsymbol{x}_1,\dots,\boldsymbol{x}_\ell} \sum_{i,j=1}^{\ell} \boldsymbol{x}_i^{\mathrm{T}} C_{i,j} \boldsymbol{x}_j \quad \text{subject to} \ \left\{ \begin{array}{cc} \text{either} & \sum_{i=1}^{\ell} \boldsymbol{x}_i^{\mathrm{T}} C_{i,i} \boldsymbol{x}_i = 1, \\ \text{or} & \boldsymbol{x}_i^{\mathrm{T}} C_{i,i} \boldsymbol{x}_i = 1, i = 1, \dots, \ell. \end{array} \right.$$

Orthogonal Multiset CCA (OMCCA)

We seek Canonical Weight Matrices $X_i \in \mathbb{R}^{n_i \times k}$ that solve

$$\max_{\{X_i\}} f(\{X_i\}), \quad \text{s.t. } X_i^{\mathrm{T}} X_i = I_k, \, i = 1, \dots, \ell,$$
(16)

where $1 \le k \le \min\{n_1, \ldots, n_\ell, q\}$, and

$$f(\{X_i\}) = \sum_{\substack{i, j=1\\i \neq j}}^{\ell} \rho_{ij} \frac{\operatorname{tr}(X_i^{\mathrm{T}} C_{i,j} X_j)}{\sqrt{\operatorname{tr}(X_i^{\mathrm{T}} C_{i,i} X_i)}} \sqrt{\operatorname{tr}(X_j^{\mathrm{T}} C_{j,j} X_j)},$$
(17)

with some weighting factors $\rho_{ij} \ge 0$ that turn out to be extremely important.

- {ρ_{ij}} dictate the contribution of the correlation between S_i and S_j to the total f({X_i});
- sparse {ρ_{ij}} dramatically reduce the number terms in f({X_i}) and thus speed up computations;
- judiciously chosen ρ_{ij} with only a few of them nonzero can in fact improve the performances of muti-view tasks (as verified by experiments).

Orthogonal Multiset CCA (OMCCA)

We seek Canonical Weight Matrices $X_i \in \mathbb{R}^{n_i \times k}$ that solve

$$\max_{\{X_i\}} f(\{X_i\}), \quad \text{s.t. } X_i^{\mathrm{T}} X_i = I_k, \, i = 1, \dots, \ell,$$
(16)

where $1 \le k \le \min\{n_1, \ldots, n_\ell, q\}$, and

$$f(\{X_i\}) = \sum_{\substack{i, j=1\\i \neq j}}^{\ell} \rho_{ij} \frac{\operatorname{tr}(X_i^{\mathrm{T}} C_{i,j} X_j)}{\sqrt{\operatorname{tr}(X_i^{\mathrm{T}} C_{i,i} X_i)}} \sqrt{\operatorname{tr}(X_j^{\mathrm{T}} C_{j,j} X_j)},$$
(17)

with some weighting factors $\rho_{ij} \ge 0$ that turn out to be extremely important.

- $\{\rho_{ij}\}$ dictate the contribution of the correlation between S_i and S_j to the total $f(\{X_i\})$;
- sparse $\{\rho_{ij}\}$ dramatically reduce the number terms in $f(\{X_i\})$ and thus speed up computations;
- judiciously chosen ρ_{ij} with only a few of them nonzero can in fact improve the performances of muti-view tasks (as verified by experiments).

Choosing weights ρ_{ij}

To begin with, we define

$$\widehat{\rho}_{ij} = \frac{\sum_{r=1}^{\operatorname{rank}(C_{i,j})} \sigma_r(C_{i,j})}{\sqrt{\operatorname{tr}(C_{i,i}) \operatorname{tr}(C_{j,j})}}, \quad \text{for } i, j = 1, \dots, \ell.$$
(18)

It is known $0 \leq \hat{\rho}_{ij} \leq 1$.

Envision a graph of ℓ nodes corresponding to dataset matrices X_i , respectively, with every two nodes connected with an edge whose weight ρ_{ij} to be determined.

Three heuristic strategies to select the weights $\rho_{ij} = \rho_{ji}$:

• uniform weighting: use $ho_{ij} = 1 \, \forall i, j;$

Tree weighting: find the minimal spanning tree of the graph with the same nodes but the edge (i, j) having weight 1 - \hat{\rho}_{ij}, and then let $ho_{ij} = \hat{\rho}_{ij}$ if the the edge (i, j) is on the tree and 0 otherwise.

(a) top-*p* weighting: let $\tilde{\rho}_{ij} = \hat{\rho}_{ij}$ for the *p* largest $\hat{\rho}_{ij}$ for i > j and all other $\tilde{\rho}_{ij} = 0$, and then apply the soft-max function to $\tilde{\rho}_{ij}$ to yield ρ_{ij} .

Choosing weights ρ_{ij}

To begin with, we define

$$\widehat{\rho}_{ij} = \frac{\sum_{r=1}^{\operatorname{rank}(C_{i,j})} \sigma_r(C_{i,j})}{\sqrt{\operatorname{tr}(C_{i,i})\operatorname{tr}(C_{j,j})}}, \quad \text{for } i, j = 1, \dots, \ell.$$
(18)

It is known $0 \leq \hat{\rho}_{ij} \leq 1$.

Envision a graph of ℓ nodes corresponding to dataset matrices X_i , respectively, with every two nodes connected with an edge whose weight ρ_{ij} to be determined.

Three heuristic strategies to select the weights $\rho_{ij} = \rho_{ji}$:

] uniform weighting: use $ho_{ij}=1\,orall i,j;$

Tree weighting: find the minimal spanning tree of the graph with the same nodes but the edge (i, j) having weight 1 - \heta_{ij}, and then let \(\rho_{ij} = \heta_{ij}\) if the the edge (i, j) is on the tree and 0 otherwise.

• top-*p* weighting: let $\tilde{\rho}_{ij} = \hat{\rho}_{ij}$ for the *p* largest $\hat{\rho}_{ij}$ for i > j and all other $\tilde{\rho}_{ij} = 0$, and then apply the soft-max function to $\tilde{\rho}_{ij}$ to yield ρ_{ij} .

Choosing weights ρ_{ij}

To begin with, we define

$$\widehat{\rho}_{ij} = \frac{\sum_{r=1}^{\operatorname{rank}(C_{i,j})} \sigma_r(C_{i,j})}{\sqrt{\operatorname{tr}(C_{i,i})\operatorname{tr}(C_{j,j})}}, \quad \text{for } i, j = 1, \dots, \ell.$$
(18)

It is known $0 \leq \hat{\rho}_{ij} \leq 1$.

Envision a graph of ℓ nodes corresponding to dataset matrices X_i , respectively, with every two nodes connected with an edge whose weight ρ_{ij} to be determined.

Three heuristic strategies to select the weights $\rho_{ij} = \rho_{ji}$:

- uniform weighting: use $\rho_{ij} = 1 \forall i, j$;
- ② tree weighting: find the minimal spanning tree of the graph with the same nodes but the edge (i, j) having weight 1 − $\hat{\rho}_{ij}$, and then let $\rho_{ij} = \hat{\rho}_{ij}$ if the the edge (i, j) is on the tree and 0 otherwise.
- top-p weighting: let $\tilde{\rho}_{ij} = \hat{\rho}_{ij}$ for the p largest $\hat{\rho}_{ij}$ for i > j and all other $\tilde{\rho}_{ij} = 0$, and then apply the soft-max function to $\tilde{\rho}_{ij}$ to yield ρ_{ij} .

SCF algorithm for OMCCA (1)

$$\max_{\{X_i\}} f(\{X_i\}), \quad \text{s.t. } X_i^{\mathrm{T}} C_{i,i} X_i = I_k, \ i = 1, \dots, \ell,$$

where

$$f(\{X_i\}) = \sum_{\substack{i,j=1\\i\neq j}}^{\ell} \rho_{ij} \frac{\operatorname{tr}(X_i^{\mathrm{T}}C_{i,j}X_j)}{\sqrt{\operatorname{tr}(X_i^{\mathrm{T}}C_{i,i}X_i)}} \sqrt{\operatorname{tr}(X_j^{\mathrm{T}}C_{j,j}X_j)}.$$

Plan to optimize $f({X_i})$ cyclically over each matrix variable X_i in the styles similar to either Jacobi or Gauss-Seidel updating for linear systems.

Specifically, an inner-outer iterative method:

- outer iteration each step called a cycle generates from the current approximation $\{X_i^{(\nu)}\}_{i=1}^{\ell}$ to the next $\{X_i^{(\nu+1)}\}_{i=1}^{\ell}$ of the maximizer of $f(\{X_i\})$;
- inner iteration an either Jacobi-style or Gauss-Seidel-style updating scheme that relies on the proposed SCF iteration for solving a series of subproblems in the form of (5).

SCF algorithm for OMCCA (1)

$$\max_{\{X_i\}} f(\{X_i\}), \quad \text{s.t. } X_i^{\mathrm{T}} C_{i,i} X_i = I_k, \ i = 1, \dots, \ell,$$

where

$$f(\{X_i\}) = \sum_{\substack{i,j=1\\i\neq j}}^{\ell} \rho_{ij} \frac{\operatorname{tr}(X_i^{\mathrm{T}}C_{i,j}X_j)}{\sqrt{\operatorname{tr}(X_i^{\mathrm{T}}C_{i,i}X_i)}} \sqrt{\operatorname{tr}(X_j^{\mathrm{T}}C_{j,j}X_j)}.$$

Plan to optimize $f({X_i})$ cyclically over each matrix variable X_i in the styles similar to either Jacobi or Gauss-Seidel updating for linear systems.

Specifically, an inner-outer iterative method:

- outer iteration each step called a cycle generates from the current approximation $\{X_i^{(\nu)}\}_{i=1}^{\ell}$ to the next $\{X_i^{(\nu+1)}\}_{i=1}^{\ell}$ of the maximizer of $f(\{X_i\})$;
- inner iteration an either Jacobi-style or Gauss-Seidel-style updating scheme that relies on the proposed SCF iteration for solving a series of subproblems in the form of (5).

SCF algorithm for OMCCA (1)

$$\max_{\{X_i\}} f(\{X_i\}), \quad \text{s.t. } X_i^{\mathrm{T}} C_{i,i} X_i = I_k, \ i = 1, \dots, \ell,$$

where

$$f(\{X_i\}) = \sum_{\substack{i,j=1\\i\neq j}}^{\ell} \rho_{ij} \frac{\operatorname{tr}(X_i^{\mathrm{T}}C_{i,j}X_j)}{\sqrt{\operatorname{tr}(X_i^{\mathrm{T}}C_{i,i}X_i)}} \sqrt{\operatorname{tr}(X_j^{\mathrm{T}}C_{j,j}X_j)}.$$

Plan to optimize $f({X_i})$ cyclically over each matrix variable X_i in the styles similar to either Jacobi or Gauss-Seidel updating for linear systems.

Specifically, an inner-outer iterative method:

- outer iteration each step called a cycle generates from the current approximation $\{X_i^{(\nu)}\}_{i=1}^{\ell}$ to the next $\{X_i^{(\nu+1)}\}_{i=1}^{\ell}$ of the maximizer of $f(\{X_i\})$;
- inner iteration an either Jacobi-style or Gauss-Seidel-style updating scheme that relies on the proposed SCF iteration for solving a series of subproblems in the form of (5).

SCF algorithm for OMCCA (2)

Let the SVDs of S_i be $(r_i = \operatorname{rank}(S_i))$

$$S_i = U_i \Sigma_i V_i^{\mathrm{T}}, \ U_i \in \mathbb{R}^{n_i \times r_i}, \ V_i \in \mathbb{R}^{q \times r_i}, \ \Sigma_i \in \mathbb{R}^{r_i \times r_i}.$$
(19)

 $X_i^{\mathrm{T}} S_i S_j^{\mathrm{T}} X_j = X_i^{\mathrm{T}} U_i \Sigma_i V_i^{\mathrm{T}} V_j \Sigma_j U_j^{\mathrm{T}} X_j =: \widehat{X}_i^{\mathrm{T}} \Sigma_i V_i^{\mathrm{T}} V_j \Sigma_j \widehat{X}_j,$

where $\widehat{X}_i = U_i^{\mathrm{T}} X_i \in \mathbb{R}^{r_i \times k}$. $X_i = U_i \widehat{X}_i$ by $\mathcal{R}(X_i) \subset \mathcal{R}(S_i)$. The function $f(\{X_i\})$ is then transformed into

$$\sum_{i \neq j} \rho_{ij} \frac{\operatorname{tr}(\widehat{X}_i^{\mathrm{T}} \Sigma_i V_i^{\mathrm{T}} V_j \Sigma_j \widehat{X}_j)}{\sqrt{\operatorname{tr}(\widehat{X}_i^{\mathrm{T}} \Sigma_i^2 \widehat{X}_i)} \sqrt{\operatorname{tr}(\widehat{X}_j^{\mathrm{T}} \Sigma_j^2 \widehat{X}_j)}} =: g(\{\widehat{X}_i\}),$$

and, thus

$$\max_{X_i \in \mathbb{O}^{n_i \times k}, \, \mathcal{R}(X_i) \subset \mathcal{R}(S_i), \, \forall i} f(\{X_i\}) = \max_{\widehat{X}_i \in \mathbb{O}^{r_i \times k}, \, \forall i} g(\{\widehat{X}_i\}).$$

SCF algorithm for OMCCA (2)

Let the SVDs of S_i be $(r_i = \operatorname{rank}(S_i))$

$$S_i = U_i \Sigma_i V_i^{\mathrm{T}}, \ U_i \in \mathbb{R}^{n_i \times r_i}, \ V_i \in \mathbb{R}^{q \times r_i}, \ \Sigma_i \in \mathbb{R}^{r_i \times r_i}.$$
(19)

$$\begin{split} X_i^{\mathrm{T}}S_iS_j^{\mathrm{T}}X_j &= X_i^{\mathrm{T}}U_i\Sigma_iV_i^{\mathrm{T}}V_j\Sigma_jU_j^{\mathrm{T}}X_j =: \widehat{X}_i^{\mathrm{T}}\Sigma_iV_i^{\mathrm{T}}V_j\Sigma_j\widehat{X}_j,\\ \text{where } \widehat{X}_i &= U_i^{\mathrm{T}}X_i \in \mathbb{R}^{r_i \times k}. \ X_i = U_i\widehat{X}_i \text{ by } \mathcal{R}(X_i) \subset \mathcal{R}(S_i).\\ \text{The function } f(\{X_i\}) \text{ is then transformed into} \end{split}$$

$$\sum_{i \neq j} \rho_{ij} \frac{\operatorname{tr}(\widehat{X}_i^{\mathrm{T}} \Sigma_i V_i^{\mathrm{T}} V_j \Sigma_j \widehat{X}_j)}{\sqrt{\operatorname{tr}(\widehat{X}_i^{\mathrm{T}} \Sigma_i^2 \widehat{X}_i)} \sqrt{\operatorname{tr}(\widehat{X}_j^{\mathrm{T}} \Sigma_j^2 \widehat{X}_j)}} =: g(\{\widehat{X}_i\}),$$

and, thus

$$\max_{X_i \in \mathbb{O}^{n_i \times k}, \, \mathcal{R}(X_i) \subset \mathcal{R}(S_i), \, \forall i} f(\{X_i\}) = \max_{\widehat{X}_i \in \mathbb{O}^{r_i \times k}, \, \forall i} g(\{\widehat{X}_i\}).$$

SCF algorithm for OMCCA (2)

Let the SVDs of S_i be $(r_i = \operatorname{rank}(S_i))$

$$S_i = U_i \Sigma_i V_i^{\mathrm{T}}, \ U_i \in \mathbb{R}^{n_i \times r_i}, \ V_i \in \mathbb{R}^{q \times r_i}, \ \Sigma_i \in \mathbb{R}^{r_i \times r_i}.$$
(19)

$$X_i^{\mathrm{T}} S_i S_j^{\mathrm{T}} X_j = X_i^{\mathrm{T}} U_i \Sigma_i V_i^{\mathrm{T}} V_j \Sigma_j U_j^{\mathrm{T}} X_j =: \widehat{X}_i^{\mathrm{T}} \Sigma_i V_i^{\mathrm{T}} V_j \Sigma_j \widehat{X}_j,$$

where $\widehat{X}_i = U_i^{\mathrm{T}} X_i \in \mathbb{R}^{r_i \times k}$. $X_i = U_i \widehat{X}_i$ by $\mathcal{R}(X_i) \subset \mathcal{R}(S_i)$. The function $f(\{X_i\})$ is then transformed into

$$\sum_{i \neq j} \rho_{ij} \frac{\operatorname{tr}(\widehat{X}_i^{\mathrm{T}} \Sigma_i V_i^{\mathrm{T}} V_j \Sigma_j \widehat{X}_j)}{\sqrt{\operatorname{tr}(\widehat{X}_i^{\mathrm{T}} \Sigma_i^2 \widehat{X}_i)} \sqrt{\operatorname{tr}(\widehat{X}_j^{\mathrm{T}} \Sigma_j^2 \widehat{X}_j)}} =: g(\{\widehat{X}_i\}),$$

and, thus

$$\max_{X_i \in \mathbb{O}^{n_i \times k}, \mathcal{R}(X_i) \subset \mathcal{R}(S_i), \forall i} f(\{X_i\}) = \max_{\widehat{X}_i \in \mathbb{O}^{r_i \times k}, \forall i} g(\{\widehat{X}_i\}).$$

SCF algorithm for OMCCA (3)

The key step to maximize $g(\{\widehat{X}_i\})$ by either the Jacobi- or Gauss-Seidel-style updating scheme is to maximize it, for any $s \in \{1, \dots, \ell\}$, over \widehat{X}_s while keeping all other \widehat{X}_i for $j \neq s$ constant.

That is equivalent to

$$\max_{\widehat{X}_s \in \mathbb{O}^{n_s \times k}} \frac{\operatorname{tr}(\widehat{X}_s^{\mathrm{T}} D_s)}{\sqrt{\operatorname{tr}(\widehat{X}_s^{\mathrm{T}} \Sigma_s^2 \widehat{X}_s)}},$$

where
$$D_s(\{\widehat{X}_i\}_{i \neq s}) = \Sigma_s V_s^{\mathrm{T}} \sum_{j \neq s} \rho_{sj} \frac{V_j \Sigma_j X_j}{\sqrt{\mathrm{tr}(\widehat{X}_j^{\mathrm{T}} \Sigma_j^2 \widehat{X}_j)}}.$$

Problem (20) is equivalent to solving:

$$\max_{\hat{\boldsymbol{\chi}}_s \in \mathbb{O}^{n_s \times k}} \frac{\operatorname{tr}^2(\hat{\boldsymbol{\chi}}_s^{\mathrm{T}} \boldsymbol{D}_s)}{\operatorname{tr}(\hat{\boldsymbol{\chi}}_s^{\mathrm{T}} \boldsymbol{\Sigma}_s^2 \hat{\boldsymbol{\chi}}_s)}.$$
(21)

SCF algorithm for OMCCA (3)

The key step to maximize $g(\{\widehat{X}_i\})$ by either the Jacobi- or Gauss-Seidel-style updating scheme is to maximize it, for any $s \in \{1, \dots, \ell\}$, over \widehat{X}_s while keeping all other \widehat{X}_i for $j \neq s$ constant.

That is equivalent to

$$\max_{\widehat{X}_{s}\in\mathbb{O}^{n_{s}\times k}}\frac{\operatorname{tr}(\widehat{X}_{s}^{\mathrm{T}}D_{s})}{\sqrt{\operatorname{tr}(\widehat{X}_{s}^{\mathrm{T}}\Sigma_{s}^{2}\widehat{X}_{s})}},$$
(20)
where $D_{s}(\{\widehat{X}_{i}\}_{i\neq s}) = \Sigma_{s}V_{s}^{\mathrm{T}}\sum_{j\neq s}\rho_{sj}\frac{V_{j}\Sigma_{j}\widehat{X}_{j}}{\sqrt{\operatorname{tr}(\widehat{X}_{j}^{\mathrm{T}}\Sigma_{j}^{2}\widehat{X}_{j})}}.$

Problem (20) is equivalent to solving:

$$\max_{\widehat{\zeta}_s \in \mathbb{O}^{n_s \times k}} \frac{\operatorname{tr}^2(\widehat{X}_s^{\mathrm{T}} D_s)}{\operatorname{tr}(\widehat{X}_s^{\mathrm{T}} \Sigma_s^2 \widehat{X}_s)}.$$

SCF algorithm for OMCCA (3)

The key step to maximize $g(\{\hat{X}_i\})$ by either the Jacobi- or Gauss-Seidel-style updating scheme is to maximize it, for any $s \in \{1, \dots, \ell\}$, over \hat{X}_s while keeping all other \hat{X}_i for $j \neq s$ constant.

That is equivalent to

$$\max_{\widehat{X}_{s}\in\mathbb{O}^{n_{s}\times k}}\frac{\operatorname{tr}(\widehat{X}_{s}^{\mathrm{T}}D_{s})}{\sqrt{\operatorname{tr}(\widehat{X}_{s}^{\mathrm{T}}\Sigma_{s}^{2}\widehat{X}_{s})}},$$
(20)
where $D_{s}(\{\widehat{X}_{i}\}_{i\neq s}) = \Sigma_{s}V_{s}^{\mathrm{T}}\sum_{j\neq s}\rho_{sj}\frac{V_{j}\Sigma_{j}\widehat{X}_{j}}{\sqrt{\operatorname{tr}(\widehat{X}_{j}^{\mathrm{T}}\Sigma_{j}^{2}\widehat{X}_{j})}}.$

Problem (20) is equivalent to solving:

$$\max_{\widehat{X}_s \in \mathbb{O}^{n_s \times k}} \frac{\operatorname{tr}^2(\widehat{X}_s^{\mathrm{T}} D_s)}{\operatorname{tr}(\widehat{X}_s^{\mathrm{T}} \Sigma_s^2 \widehat{X}_s)}.$$
(21)

Algorithm 3. RCOMCCA: Range Constrained OMCCA

Input: $\{S_i \in \mathbb{R}^{n_i \times q}\}$ (each S_i centered), integer k, and tolerance ϵ ; **Output:** $\{X_i \in \mathbb{O}^{n_i \times k}\}$ that maximizes $f(\{X_i\})$.

- 1: compute SVDs in (19);
- 2: pick an initial approximation $\widehat{X}_{1}^{(0)}$;
- 3: $\nu = 0$, g = 0;
- 4: repeat
- 5: $g_0 = g; g = 0;$
- 6: for s = 1 to ℓ do
- 7: compute the next $\{\widehat{X}^{(\nu+1)}_s\}$ by solving (21), where either

 $D_s = D_s(\{\widehat{X}_i^{(\nu)}\}_{i \neq s})$ for Jacobi-style updating, or $D_s = D_s(\widehat{X}_1^{(\nu+1)}, \ldots, \widehat{X}_{s-1}^{(\nu+1)}, \widehat{X}_{s+1}^{(\nu)}, \ldots, \widehat{X}_{\ell}^{(\nu)})$ for Gauss-Seidel-style updating;

- 8: $g = g + g_s$, where g_s is the computed optimal objective value of (21).
- 9: end for
- 10: $\nu = \nu + 1;$
- 11: **until** $|g g_0| \leq \epsilon g$;
- 12: return $X_i = U_i \widehat{X}_i^{(\nu)}$ for $1 \le i \le \ell$.

Outline

Introduction to CCA

- 2 Orthogonal CCA (OCCA)
- 3 Submaximization Problem
- Orthogonal Multiset CCA (OMCCA)
- 5 Applications

Multi-class classification: assign an object (vector) \boldsymbol{x} to one of n_c classes, often by attaching a label $y \in \{1, 2, ..., n_c\}$.

Multi-label classification: assign an object (vector) \boldsymbol{x} to one or more of n_c classes, often by attaching an indicator vector $\boldsymbol{y} \in \mathbb{R}^{n_c}$ of 0s and 1s in such a way that \boldsymbol{x} belongs to class i if $\boldsymbol{y}_{(i)} = 1$ and doesn't otherwise.

 $X \in \mathbb{R}^{n \times q}$ contains q vectors of size n, and $Y \in \mathbb{R}^{n_c \times q}$ consists of q corresponding indicator vectors. CCA for multi-label classification popularly treats X as one view and Y as the other.

We will use ML-kNN¹ as our backend multi-label classifier.

Multi-class classification: assign an object (vector) \boldsymbol{x} to one of n_c classes, often by attaching a label $y \in \{1, 2, ..., n_c\}$.

Multi-label classification: assign an object (vector) \boldsymbol{x} to one or more of n_c classes, often by attaching an indicator vector $\boldsymbol{y} \in \mathbb{R}^{n_c}$ of 0s and 1s in such a way that \boldsymbol{x} belongs to class i if $\boldsymbol{y}_{(i)} = 1$ and doesn't otherwise.

 $X \in \mathbb{R}^{n \times q}$ contains q vectors of size n, and $Y \in \mathbb{R}^{n_c \times q}$ consists of q corresponding indicator vectors. CCA for multi-label classification popularly treats X as one view and Y as the other.

We will use ML-kNN¹ as our backend multi-label classifier.

Table: Multi-label classification datasets

Multi-class classification: assign an object (vector) \boldsymbol{x} to one of n_c classes, often by attaching a label $y \in \{1, 2, ..., n_c\}$.

Multi-label classification: assign an object (vector) \boldsymbol{x} to one or more of n_c classes, often by attaching an indicator vector $\boldsymbol{y} \in \mathbb{R}^{n_c}$ of 0s and 1s in such a way that \boldsymbol{x} belongs to class i if $\boldsymbol{y}_{(i)} = 1$ and doesn't otherwise.

 $X \in \mathbb{R}^{n \times q}$ contains q vectors of size n, and $Y \in \mathbb{R}^{n_c \times q}$ consists of q corresponding indicator vectors. CCA for multi-label classification popularly treats X as one view and Y as the other.

We will use ML-kNN¹ as our backend multi-label classifier.

Table: Multi-label classification datasets

Multi-class classification: assign an object (vector) \boldsymbol{x} to one of n_c classes, often by attaching a label $y \in \{1, 2, ..., n_c\}$.

Multi-label classification: assign an object (vector) \boldsymbol{x} to one or more of n_c classes, often by attaching an indicator vector $\boldsymbol{y} \in \mathbb{R}^{n_c}$ of 0s and 1s in such a way that \boldsymbol{x} belongs to class i if $\boldsymbol{y}_{(i)} = 1$ and doesn't otherwise.

 $X \in \mathbb{R}^{n \times q}$ contains q vectors of size n, and $Y \in \mathbb{R}^{n_c \times q}$ consists of q corresponding indicator vectors. CCA for multi-label classification popularly treats X as one view and Y as the other.

We will use ML-kNN¹ as our backend multi-label classifier.

Dataset	Samples (q)	Attributes (n)	labels (n_c)
birds	645	260	19
emotions	593	72	6

Table: Multi-label classification datasets

Table: Results on two datasets by 5 methods (40% for training and 60% for testing over 10 random splits). Best results are in bold.

dataset	method	OneError	Average_Precision
	OCCA-scf	$\textbf{0.4964} \pm \textbf{0.0201}$	$\textbf{0.5452} \pm \textbf{0.0118}$
	CCA	0.8110 ± 0.0302	0.3087 ± 0.0192
birds	LS-CCA	0.8110 ± 0.0302	0.3084 ± 0.0191
	OCCA-SSY	0.5978 ± 0.0269	0.4722 ± 0.0182
	ML-kNN	0.7101 ± 0.0136	0.3942 ± 0.0108
	OCCA-scf	0.3258 ± 0.0201	$\textbf{0.7640} \pm \textbf{0.0118}$
emotions	CCA	0.3497 ± 0.0169	0.7443 ± 0.0126
	LS-CCA	0.3385 ± 0.0182	0.7553 ± 0.0154
	OCCA-SSY	0.3860 ± 0.0274	0.7190 ± 0.0172
	ML-kNN	0.3983 ± 0.0169	0.6960 ± 0.0085

- OneError: the average number of times the top-ranked label is not in the set of proper labels of the instance (the smaller the better)
- Average_Precision: the average precision of labels ranked above a particular label in the same label set. (the bigger the better)

Application 2: Multi-view feature extraction

1-nearest neighbor classifier for evaluating classification accuracy performance.

CCA methods with varying $k \in \{3, 4, 5, 6\}$ for mfeat, and $k \in \{3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50\}$ for other datasets.

Split data into training and testing with ratio 30/70. Results are based on the average of 10 randomly drawn splits.

Six variants of RCOMCCA in total based on different weighting rule. For the top-p weighting scheme, $p \in \{1, 3, 6\}$ is used, and best results are reported.

We compare with MCCA (Nielsen, 2002) and OMCCA-SS (Shen and Sun, 2015).

Dataset	Samples	Multiple views	classes
mfeat	2000	216;76;64;6;240;47	10
Caltech101-7	1474	254;512;1180;1008;64;1000	7
Caltech101-20	2386	254;512;1180;1008;64;1000	20

Table: Multi-view datasets

Table: Means and standard deviations of accuracy (Parameter k used by CCA methods to achieve the best accuracy is shown in the bracket).

	mfeat	Caltech101-7
view1	0.9513 ± 0.0053	0.9259 ± 0.0049
view2	0.7604 ± 0.0104	0.9443 ± 0.0051
view3	0.9293 ± 0.0043	0.9415 ± 0.0070
view4	0.6780 ± 0.0064	0.9287 ± 0.0105
view5	0.9630 ± 0.0025	0.7759 ± 0.0133
view6	0.7814 ± 0.0077	0.9152 ± 0.0059
MCCA	0.8679 ± 0.0073 (6)	$0.8865 \pm 0.0072 \ (15)$
OMCCA-SS	0.8298 ± 0.0089 (6)	0.9493 ± 0.0024 (45)
RCOMCCA-G (uniform)	0.7634 ± 0.0134 (5)	0.8880 ± 0.0052 (50)
RCOMCCA-G (top- p)	$0.9696 \pm 0.0035 \ (5)$	$0.9664 \pm 0.0060 \; (35)$
RCOMCCA-G (tree)	0.9566 ± 0.0031 (6)	0.9392 ± 0.0043 (45)
RCOMCCA-J (uniform)	0.7540 ± 0.0121 (5)	0.8868 ± 0.0068 (30)
RCOMCCA-J (top- p)	0.9692 ± 0.0038 (5)	$0.9649 \pm 0.0029 \; (15)$
RCOMCCA-J (tree)	$0.9581\pm0.0055(6)$	$0.9474\pm0.0041(45)$
Accuracy, CPU time and Training ratio

Figure: Accuracy and CPU time of MCCA methods on two datasets by varying the reduced dimension k and the training ratio.

Rencang Li (University of Texas at Arlington)

SCF for OCCA

Outline

Introduction to CCA

- 2 Orthogonal CCA (OCCA)
- 3 Submaximization Problem
- Orthogonal Multiset CCA (OMCCA)
- 5 Applications

Summary

• An OCCA-SCF algorithm for solving trace-fractional matrix optimization problem:

$$\max_{G \in \mathbb{O}^{n \times k}} \eta(G) \quad \text{with } \eta(G) := \frac{\operatorname{tr}(G^{\mathrm{T}}D)}{\sqrt{\operatorname{tr}(G^{\mathrm{T}}AG)}},$$

where Stiefel manifold: $\mathbb{O}^{n \times k} = \{ X \in \mathbb{R}^{n \times k} : X^{\mathrm{T}}X = I_k \}.$

• An alternating iterative method for solving Orthogonal Canonical Correlation Analysis (OCCA):

$$\max_{X \in \mathbb{O}^{n \times k}, Y \in \mathbb{O}^{m \times k}} \frac{\operatorname{tr}(X^{\mathrm{T}}CY)}{\sqrt{\operatorname{tr}(X^{\mathrm{T}}AX)}\sqrt{\operatorname{tr}(Y^{\mathrm{T}}BY)}}.$$

- A new orthogonal multiset OCCA (OMCCA) model with integrated weights for each pair of views and trace-fractional objective for correlations between any two views.
- Applications to two real world applications: multi-label classification and multi-view feature extraction.

Related Reference

Leihong Zhang, Li Wang, Zhaojun Bai and Ren-Cang Li. A Self-consistent-field Iteration for Orthogonal Canonical Correlation Analysis.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

DOI: 10.1109/TPAMI.2020.3012541, 2020.

(with a supplement of 13 pages for proofs)